Abstract:
In a shaping device, a sheet that distends due to being irradiated with electromagnetic waves is placed a conveyor belt. An irradiator irradiates the sheet placed on and conveyed by the conveyor belt with electromagnetic waves. At least one heater heats the conveyor belt.
Abstract:
A board connection structure including a wiring board having a contact point section provided at one end portion and opposed to a switch button, and a holding member to which the wiring board is attached with flat surfaces of the contact point section and the connection section on the same surface intersecting with each other by the folding of the wiring board.
Abstract:
In a shaping device, a conveyor conveys a formable sheet that distends due to being irradiated with electromagnetic waves. An irradiator irradiates the electromagnetic waves on the formable sheet being conveyed by the conveyor. A focus point adjuster adjusts a position of a focus point of the electromagnetic waves irradiated by the irradiator. The focus point adjuster adjusts the position of the focus point in accordance with a degree of definition of an unevenness to be caused to form on the formable sheet due to distension of the formable sheet.
Abstract:
A system for forming a structure on a print medium 1 includes: a print unit (print device) 10 for printing an electromagnetic wave-heat conversion layer for converting electromagnetic waves into heat, on a medium including an expansion layer that expands by heating; an expansion unit (expansion device) 20 aligned laterally with the print unit 10, for expanding the expansion layer by irradiating the medium with electromagnetic waves; and a top plate 30 covering the print unit 10 and the expansion unit 20 from above.
Abstract:
An antenna device includes an antenna element including a conductor; and a dielectric component. The antenna element includes a conductor. The dielectric component has a dielectric loss of 0.002 or greater. The dielectric component is attached to the antenna element.
Abstract:
An antenna device of the present invention includes, in one aspect: a patch antenna having a resonant frequency at a first frequency; and a loop antenna having a resonant frequency at a second frequency that is different from the first frequency. A loop length of the loop antenna is such that standing waves are generated in the loop antenna when the loop antenna receives radio waves of the first frequency, and the patch antenna is disposed so as to magnetically couple with the loop antenna.
Abstract:
A production method of a modeled object includes a fixing step of fixing a thermally expandable sheet onto a tray by entirely or partially fixing a periphery of the thermally expandable sheet placed on the tray by a fixing member; a thermally expanding step of thermally expanding partially the thermally expandable sheet, which is in a state of being fixed onto the tray by the fixing step, by being heated by irradiating the thermally expandable sheet with light by an irradiation unit, while moving the irradiation unit from a first position toward a second position unit; and cooling the thermally expandable sheet, which has been thermally expanded partially by the thermally expanding step, while maintaining the state in which the thermally expandable sheet is fixed onto the tray, while returning the irradiation unit from the second position to the first position.
Abstract:
A system for forming a structure on a print medium 1 includes: a print unit (print device) 10 for printing an electromagnetic wave-heat conversion layer for converting electromagnetic waves into heat, on a medium including an expansion layer that expands by heating; an expansion unit (expansion device) 20 aligned laterally with the print unit 10, for expanding the expansion layer by irradiating the medium with electromagnetic waves; and a top plate 30 covering the print unit 10 and the expansion unit 20 from above.
Abstract:
An expansion device includes: an irradiation unit configured to irradiate a thermally-expandable sheet with light; a movement unit configured to relatively move the thermally-expandable sheet and the irradiation unit; an air-blowing unit configured to cool the irradiation unit by blowing air to the irradiation unit; and a control unit configured to execute a distension process of distending the thermally-expandable sheet by causing the irradiation unit to emit light while relatively moving the thermally-expandable sheet and the irradiation unit by the movement unit, wherein the control unit controls the air-blowing unit to stop or weaken blowing air toward the irradiation unit while the irradiation unit is caused to emit light in the distension process.
Abstract:
An expansion device, including: an installation unit in which a thermally expandable sheet is disposed; an irradiation unit configured to irradiate the thermally expandable sheet placed on the installation unit with light; and a control unit configured to perform processes described below, wherein after an expansion process to expand the thermally expandable sheet by irradiating the thermally expandable sheet placed on the installation unit with light by the irradiation unit, a cooling process to cool the thermally expandable sheet by a predetermined cooling unit while maintaining the state in which the thermally expandable sheet is placed on the installation unit.