Abstract:
Described herein are methods for enhancing engraftment of hematopoietic stem and progenitor cells using farnesyl compounds identified using a zebrafish model of hematopoietic cell engraftment. The compounds can be used to treat hematopoietic stem cells ex vivo prior to transplantation of the cells. Alternatively, the compounds can be administered to an individual undergoing cell transplantation.
Abstract:
Provided herein are methods for diagnosing cancer by determining the level of expression of SETDB1 in a biological sample. Also provided herein are methods for treating cancer by administering an inhibitor of SETDB1 to a subject in need thereof.
Abstract:
Described herein are methods for enhancing engraftment of hematopoietic stem and progenitor cells using compounds identified using a zebrafish model of hematopoietic cell engraftment. The compounds can be used to treat hematopoietic stem cells ex vivo prior to transplantation of the cells. Alternatively, the compounds can be administered to an individual undergoing cell transplantation.
Abstract:
The present invention provides for compositions and methods for modulating hematopoetic stem cell populations by using HCS modulators, which are agents that either increase HSC numbers or decrease HSC numbers as desired by a particular indication. For example, HSC modulators found to increase HSC numbers include prostaglandin E2 (PGE2) and agents that stimulate the PGE2 pathway. Conversely, HSC modulators that prevent PGE2 synthesis decrease HSC numbers. HCS modulators may be used in vitro, in vivo, or ex vivo.
Abstract:
The present invention relates to methods, compositions and kits for treatment of ribosomal disorders and ribosomopathies, e.g. Diamond Blackfan anemia (DBA). In some embodiments, the invention relates to the use of novel classes of compounds, i.e. inhibitors of RSK (p90S6K); inhibitors of p70S6K; and inhibitors of rps6, to treat ribosomal disorders and ribosomopathies. In some embodiments, the invention relates to the use of specific Chk2 inhibitors and to the use of specific phenothiazine derivatives to treat ribosomal disorders and ribosomopathies, e.g. DBA.
Abstract:
The present invention relates generally to methods, compositions and kits for treatment of ribosomal disorders and ribosomopathy, e.g. Diamond Blackfan anemia (DBA). In some embodiments, the invention relates to methods for the use of calmodulin inhibitors and calcium channel blockers for treatment of ribosomal disorders and ribosomopathy, e.g. Diamond Blackfan anemia (DBA).
Abstract:
Described herein are methods for enhancing engraftment of hematopoietic stem and progenitor cells using farnesyl compounds identified using a zebrafish model of hematopoietic cell engraftment. The compounds can be used to treat hematopoietic stem cells ex vivo prior to transplantation of the cells. Alternatively, the compounds can be administered to an individual undergoing cell transplantation.
Abstract:
Described herein are methods for enhancing engraftment of hematopoietic stem and progenitor cells using farnesyl compounds identified using a zebrafish model of hematopoietic cell engraftment. The compounds can be used to treat hematopoietic stem cells ex vivo prior to transplantation of the cells. Alternatively, the compounds can be administered to an individual undergoing cell transplantation.
Abstract:
The present invention provides for compositions and methods for modulating hematopoetic stem cell populations by using HCS modulators, which are agents that either increase HSC numbers or decrease HSC numbers as desired by a particular indication. For example, HSC modulators found to increase HSC numbers include prostaglandin E2 (PGE2) and agents that stimulate the PGE2 pathway. Conversely, HSC modulators that prevent PGE2 synthesis decrease HSC numbers. HCS modulators may be used in vitro, in vivo, or ex vivo.
Abstract:
The present invention provides for compositions and methods for modulating hematopoetic stem cell populations by using HCS modulators, which are agents that either increase HSC numbers or decrease HSC numbers as desired by a particular indication. For example, HSC modulators found to increase HSC numbers include prostaglandin E2 (PGE2) and agents that stimulate the PGE2 pathway. Conversely, HSC modulators that prevent PGE2 synthesis decrease HSC numbers. HCS modulators may be used in vitro, in vivo, or ex vivo.