Abstract:
This invention relates to long non-coding RNAs (lncRNAs), libraries of those ncRNAs that bind chromatin modifiers, such as Polycomb Repressive Complex 2, inhibitory nucleic acids and methods and compositions for targeting lncRNAs.
Abstract:
Engineered CRISPR-Cas9 nucleases with improved specificity and their use in genomic engineering, epigenomic engineering, genome targeting, and genome editing.
Abstract:
This invention relates to long non-coding RNAs (lncRNAs), libraries of those ncRNAs that bind chromatin modifiers, such as Polycomb Repressive Complex 2, inhibitory nucleic acids and methods and compositions for targeting lncRNAs.
Abstract:
Methods for identifying and developing biomarkers based on the characterization of disease-related components of gene-specific chromatin regulatory protein complexes. Chemoprobes that are substrate-competitive and selectively bind enzymatically active enzymes associated with gene-specific chromatin regulatory protein complex can be used to select chromatin complexes associated with a phenotype of interest.
Abstract:
The present invention relates to compositions and methods for the detecting, treating, and empirically investigating the interaction between a subject's immune system and cancer stem cells. In particular, the present invention provides compositions and methods for using IL-22 cytokine signaling and/or downstream targets of IL-22 cytokine signaling (e.g., STAT3, DOT1L, SUZ12, EED) in the diagnosis, treatment, and empirical investigation of cancers characterized with cancer stem cells activated through IL-22 cytokine signaling.
Abstract:
The present invention features a method for determining the methyltransferase activity of a polypeptide and screening for modulators of methyltransferase activity, more particularly for modulators of the methylation of retinoblastoma by SMYD3. The invention further provides a method or pharmaceutical composition for prevention or treating of colorectal cancer, hepatocellular carcinoma, bladder cancer and/or breast cancer using a modulator so identified.
Abstract:
The present invention provides a reconstituted complex including EED, EZH2 and SUZ12 wherein the reconstituted complex has histone methyltransferase (HMTase) activity for lysine 27 of histone H3 (H3-K27). The reconstituted complex may further include RbAp48, AEBP2 or both. Also disclosed are methods of producing the reconstituted complex, methods of identifying compounds that inhibit the HTMase activity of the reconstituted complex and methods of identifying candidate compounds for treating cancer. Reagents and kits including the reconstituted complex are further provided.
Abstract:
Provided herein are compositions and methods for improving immune system function. In particular, provided herein are compositions, methods, and uses of YY1 and EZH2 inhibitors for preventing and reversing T-cell exhaustion (e.g., for use in immunotherapy).
Abstract:
Engineered CRISPR-Cas9 nucleases with improved specificity and their use in genomic engineering, epigenomic engineering, genome targeting, and genome editing.