Abstract:
This disclosure describes a system for Single Root I/O Virtualization (SR-IOV) pass-thru for network packet processing via a virtualized environment of a device. The system includes a device comprising a virtualized environment and a plurality of virtual machines having a virtual network interface for receiving and transmitting network packets. A driver for the physical network interface of the device creates a plurality of virtual devices corresponding to the physical network interface, which appear as a Peripheral Component Interconnect (PCI) device to the virtualized environment. A virtual device of the plurality of virtual devices is assigned via the virtualized environment to each virtual machine of the plurality of virtual machines. The virtual machine uses the virtual device assigned to the virtual machine, to receive and transmit network packets via the physical network interface of the device.
Abstract:
The present disclosure provides solutions for an enterprise providing services to a variety of clients to enable the client to use the resources provided by the enterprise by modifying URLs received and the URLs from the responses from the servers to the client's requests before forwarding the requests and the responses to the intended destinations. An intermediary may identify an access profile for a clients' request to access a server via a clientless SSL VPN session. The intermediary may detect one or more URLs in content served by the server in response to the request using one or more regular expressions of the access profile. The intermediary may rewrite or modify, responsive to detecting, the one or more detected URLs in accordance with a URL transformation specified by one or more rewrite policies of the access profile. The response with modified URLs may be forwarded to the client.
Abstract:
The present solution is related to a method for distributing flows of network traffic across a plurality of packet processing engines executing on a corresponding core of a multi-core device. The method includes receiving, by a multi-core device intermediary to clients and servers, a packet of a first flow of network traffic between a client and server. The method also includes assigning, by a flow distributor of the multi-core device, the first flow of network traffic to a first core executing a packet processing engine and distributing the packet to this core. The flow distributor may distribute packets of another or second flow of traffic between another client and server to a second core executing a second packet processing engine. When a packet for the flow of traffic assigned to the first core is received, such as a third packet, the flow distributor distributes this packet to the first core.
Abstract:
Systems and methods for configuring and evaluating policies that direct processing of one or more data streams are described. A configuration interface is described for allowing users to specify object oriented policies. These object oriented policies may allow any data structures to be applied with respect to a payload of a received packet stream, including any portions of HTTP traffic. A configuration interface may also allow the user to control the order in which policies and policy groups are executed, in addition to specifying actions to be taken if one or more policies are undefined. Systems and methods for processing the policies may allow efficient processing of object-oriented policies by applying potentially complex data structures to unstructured data streams. A device may also interpret and process a number of flow control commands and policy group invocation statements to determine an order of execution among a number of policies and policy groups. These policy configurations and processing may allow configuration and processing of complex network behaviors relating to load balancing, VPNs, SSL offloading, content switching, application security, acceleration, and caching.
Abstract:
The present solution is related to a method for distributing flows of network traffic across a plurality of packet processing engines executing on a corresponding core of a multi-core device. The method includes receiving, by a multi-core device intermediary to clients and servers, a packet of a first flow of network traffic between a client and server. The method also includes assigning, by a flow distributor of the multi-core device, the first flow of network traffic to a first core executing a packet processing engine and distributing the packet to this core. The flow distributor may distribute packets of another or second flow of traffic between another client and server to a second core executing a second packet processing engine. When a packet for the flow of traffic assigned to the first core is received, such as a third packet, the flow distributor distributes this packet to the first core.
Abstract:
The present disclosure is directed to systems and method for providing a virtual appliance. One or more application delivery controller appliances intermediary to a plurality of clients and a plurality of servers perform a plurality of application delivery control functions on network traffic communicated between the plurality of clients and the plurality of servers. A virtual application delivery controller is deployed on a device intermediary to the plurality of clients and the plurality of servers. The virtual application delivery controller executing on the device performs one or more of the plurality of application delivery control functions on network traffic communicated between the plurality of clients and the plurality of servers.
Abstract:
This disclosure describes a system for Single Root I/O Virtualization (SR-IOV) pass-thru for network packet processing via a virtualized environment of a device. The system includes a device comprising a virtualized environment and a plurality of virtual machines having a virtual network interface for receiving and transmitting network packets. A driver for the physical network interface of the device creates a plurality of virtual devices corresponding to the physical network interface, which appear as a Peripheral Component Interconnect (PCI) device to the virtualized environment. A virtual device of the plurality of virtual devices is assigned via the virtualized environment to each virtual machine of the plurality of virtual machines. The virtual machine uses the virtual device assigned to the virtual machine, to receive and transmit network packets via the physical network interface of the device.
Abstract:
The present disclosure provides solutions for an enterprise providing services to a variety of clients to enable the client to use the resources provided by the enterprise by modifying URLs received and the URLs from the responses from the servers to the client's requests before forwarding the requests and the responses to the intended destinations. An intermediary may identify an access profile for a clients' request to access a server via a clientless SSL VPN session. The intermediary may detect one or more URLs in content served by the server in response to the request using one or more regular expressions of the access profile. The intermediary may rewrite or modify, responsive to detecting, the one or more detected URLs in accordance with a URL transformation specified by one or more rewrite policies of the access profile. The response with modified URLs may be forwarded to the client.
Abstract:
Systems and methods for configuring and evaluating policies that direct processing of one or more data streams are described. A configuration interface is described for allowing users to specify object oriented policies. These object oriented policies may allow any data structures to be applied with respect to a payload of a received packet stream, including any portions of HTTP traffic. A configuration interface may also allow the user to control the order in which policies and policy groups are executed, in addition to specifying actions to be taken if one or more policies are undefined. Systems and methods for processing the policies may allow efficient processing of object-oriented policies by applying potentially complex data structures to unstructured data streams. A device may also interpret and process a number of flow control commands and policy group invocation statements to determine an order of execution among a number of policies and policy groups. These policy configurations and processing may allow configuration and processing of complex network behaviors relating to load balancing, VPNs, SSL offloading, content switching, application security, acceleration, and caching.