Abstract:
The present disclosure relates to a novel pyruvate dehydrogenase variant, a polynucleotide encoding the pyruvate dehydrogenase variant, a microorganism of the genus Corynebacterium producing L-amino acid, which includes the pyruvate dehydrogenase variant, and a method for producing an L-amino acid using the microorganism.
Abstract:
The present invention relates to microorganisms of corynebacterium which can utilize xylose and to a method for producing L-lysine using same. More particularly, the present invention relates to microorganisms of corynebacterium which are modified, in which genes encoding xylose isomerase and xylulokinase which are xylose synthases are introduced to express the xylose synthase. The present invention also relates to a method for producing L-lysine, comprising a step of culturing the modified microorganisms of corynebacterium using xylose as a carbon source, and recovering L-lysine from the culture.
Abstract:
The present disclosure relates to a novel pyruvate dehydrogenase variant, a polynucleotide encoding the pyruvate dehydrogenase variant, a microorganism of the genus Corynebacterium producing L-amino acid, which includes the pyruvate dehydrogenase variant, and a method for producing an L-amino acid using the microorganism.
Abstract:
The present invention relates to microorganisms of corynebacterium which can utilize xylose and to a method for producing L-lysine using same. More particularly, the present invention relates to microorganisms of corynebacterium which are modified, in which genes encoding xylose isomerase and xylulokinase which are xylose synthases are introduced to express the xylose synthase. The present invention also relates to a method for producing L-lysine, comprising a step of culturing the modified microorganisms of corynebacterium using xylose as a carbon source, and recovering L-lysine from the culture.
Abstract:
The present disclosure relates to modified homoserine dehydrogenase and a method for producing a homoserine-derived L-amino acid using the same.
Abstract:
The present disclosure relates to a novel modified RNA polymerase sigma factor A (SigA) polypeptide; a polynucleotide encoding the same; a microorganism containing the polypeptide; and a method for producing L-lysine using the microorganism.
Abstract:
A microorganism of the genus Corynebacterium with an improved ability to produce L-lysine in which a septum formation initiator protein is inactivated and a method for producing L-lysine using the microorganism.
Abstract:
The present disclosure relates to modified homoserine dehydrogenase and a method for producing a homoserine-derived L-amino acid using the same.
Abstract:
The present disclosure relates to modified homoserine dehydrogenase and a method for producing homoserine or a homoserine-derived L-amino acid using the same.