Abstract:
A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
Abstract:
The present disclosure relates to an endoluminal prosthesis, such as a stent graft that includes one or more fenestrations to accommodate endovascular disease, such as an aneurysm in cases where one or more side branches is involved. In one aspect, the prosthesis includes fenestrations that are pivotable to accommodate the dynamic geometry of the aortic branches. In another aspect, the pivotable fenestrations include a first perimeter, a band of flexible material attached and surrounding the first perimeter, and a second perimeter attached to and surrounding the band of flexible material. The first perimeter, band of flexible material, and second perimeter have a geometric shape. In one aspect, the prosthesis includes at least three pivotable fenestrations.
Abstract:
The present disclosure relates to an endoluminal prosthesis, such as a stent graft that includes one or more fenestrations to accommodate endovascular disease, such as an aneurysm in cases where one or more side branches is involved. In one aspect, the prosthesis includes fenestrations that are pivotable to accommodate the dynamic geometry of the aortic branches. In another aspect, the pivotable fenestrations include a first perimeter, a band of flexible material attached and surrounding the first perimeter, and a second perimeter attached to and surrounding the band of flexible material. The first perimeter, band of flexible material, and second perimeter have a geometric shape. In one aspect, the prosthesis includes at least three pivotable fenestrations.
Abstract:
Apparatus and methods for facilitating deployment of an implantable medical device including a stent graft. A restraining device, such as cord or suture, holds at least the proximal end of the stent in a radially inwardly compressed configuration during delivery to a desired location within the lumen of a patient's vessel. Withdrawal of one or more trigger wires facilitates the release and removal of the restraining cord from the proximal end of the stent so as to allow the stent to become fully deployed within vessel.
Abstract:
A stent-graft comprises a substantially tubular graft material, and a stent coupled to the graft material. The stent has proximal and distal ends and further has compressed and deployed states. The proximal end is disposed proximally beyond a proximal edge of the graft material, and the distal end has at least one portion overlapping with the proximal edge of the graft material. In one example, the stent comprises at least one distal apex having a bifurcation extending into first and second leg regions. A distal end of the first leg region is positioned to overlap the graft material at a location circumferentially spaced apart from a location at which a distal end of the second leg region overlaps the graft material in the deployed state.
Abstract:
An endovascular prosthesis and method of constructing said prosthesis device for implantation into the lumen of a body vessel. The endovascular prosthesis comprises a fenestration in the device surrounded by an inner edge, and the inner edge further surrounded by an outer edge of larger diameter. A shaped protrusion of semi-rigid graft material spans the distance between the inner edge and the outer edge connecting the two edges. The shape protrusion has a surface area larger than the plane of the tubular body between the edges and therefore will have excess material. This excess material allows the inner edge and the fenestration to move within the circumference of the outer edge. The shaped protrusion may also form a semi-rigid dome.
Abstract:
A wireless medical device release system may reduce the overall diameter of the medical device delivery system. The medical device delivery system may include a medical device with a looped portion at a section of the medical device. A capture element may be located on a delivery tool that is distal to the medical device. The looped portion of the medical device may be located in the capture element and held in the capture element by a sheath covering the delivery tool. Removal of the sheath may release the looped portion of the medical device from the capture element and delivery tool.
Abstract:
A system may include an endoluminal prosthesis and a guide wire. The prosthesis may include a tubular body including a graft material wall, a proximal end opening, a distal end opening, and a lumen extending longitudinally therein. The prosthesis may include first and second fenestrations in the graft material wall. The first and second fenestrations may be spaced from one another circumferentially about the tubular body. The guide wire may have a first end and a second end both extending from a region proximal of the proximal end opening. The guide wire may enter the proximal end opening, exit the first fenestration, partially traverse an exterior surface of the prosthesis, enter the second fenestration, and exit the proximal end opening. No portion of the guide wire may extend distally beyond the distal end opening.
Abstract:
Devices for delivering and deploying an endoluminal prosthesis are disclosed and comprise a delivery catheter, an endoluminal prosthesis disposed at a distal end portion of the delivery catheter, and a wire. The prosthesis comprises a tubular graft having at least one fenestration. The wire extends distally from a first wire end through an axial lumen of the delivery catheter and the prosthesis, and through the fenestration in the graft. The wire extends proximally through a lumen of the prosthesis and through an axial lumen of the delivery catheter towards a second wire end. Additional devices, systems, and methods are disclosed.
Abstract:
The present disclosure relates to an endoluminal prosthesis, such as a stent graft that includes one or more fenestrations to accommodate endovascular disease, such as an aneurysm in cases where one or more side branches is involved. In one aspect, the prosthesis includes fenestrations that are pivotable to accommodate the dynamic geometry of the aortic branches. In another aspect, the pivotable fenestrations include a first perimeter, a band of flexible material attached and surrounding the first perimeter, a second perimeter attached to and surrounding the band of flexible material and a support frame disposed about a surface of the band of flexible material. The first perimeter, band of flexible material, and second perimeter have a geometric shape. The support frame includes a plurality of support units having curved segments. The curved segments of the support units may be concave with respect to an exterior surface of the prosthesis.