Abstract:
Curved bezel-concealing display covers and display devices are disclosed. In one embodiment, a bezel-concealing display cover for coupling to a display device having a bezel and a display panel includes a curved perimeter portion having a first surface and a second surface, wherein the curved perimeter portion is configured to be offset from the bezel of the display device by a varying gap GA. The bezel-concealing display cover further includes an array of prisms on at least one of the first surface or the second surface of the curved perimeter portion. The array of prisms extends from an edge of the curved perimeter portion to a distance L. The array of prisms and the curved perimeter portion is configured to shift a portion of an image proximate the bezel produced by the display panel such that the shifted portion of the image appears over the bezel to an observer.
Abstract:
A light diffusing component is disclosed. The light diffusing component comprises a substrate, such as glass, having a frontside, a backside spaced apart from the frontside, and an edge configured to receive a light source. The glass sheet includes at least one scattering layer having a plurality of light scattering centers etched into at least a portion of the frontside of the glass sheet. The scattering centers have an increased density as the distance from the edge increases and the scattering centers are randomly distributed in size and smaller than about 200 μm. Also disclosed is a method of manufacturing a light diffusing component comprising masking a substrate, such as a glass sheet, and etching the substrate such that the density of the resulting scattering centers increased as the distance from the light source increases.
Abstract:
Curved bezel-concealing display covers and display devices are disclosed. In one embodiment, a bezel-concealing display cover for coupling to a display device having a bezel and a display panel includes a curved perimeter portion having a first surface and a second surface, wherein the curved perimeter portion is configured to be offset from the bezel of the display device by a varying gap GA. The bezel-concealing display cover further includes an array of prisms on at least one of the first surface or the second surface of the curved perimeter portion. The array of prisms extends from an edge of the curved perimeter portion to a distance L. The array of prisms and the curved perimeter portion is configured to shift a portion of an image proximate the bezel produced by the display panel such that the shifted portion of the image appears over the bezel to an observer.
Abstract:
A light diffusing component and a method of making is disclosed. The light diffusing component may include a substrate sheet and at least one scattering layer. The substrate sheet may have a back side and an edge. The edge may be configured to receive a light source. The at least one scattering layer may have a plurality of light scattering centers etched into at least a portion of the back side of the glass sheet. The scattering centers may have an increased density as the distance from the edge increases. The scattering centers may have a diameter of less than about 30 microns, a maximum depth of about 10 micron or less, and a roughness between about 0.5 nm to about 100 nm, for example.
Abstract:
A light diffusing component is disclosed. The light diffusing component comprises a substrate, such as glass, having a frontside, a backside spaced apart from the frontside, and an edge configured to receive a light source. The glass sheet includes at least one scattering layer having a plurality of light scattering centers etched into at least a portion of the frontside of the glass sheet. The scattering centers have an increased density as the distance from the edge increases and the scattering centers are randomly distributed in size and smaller than about 200 μm. Also disclosed is a method of manufacturing a light diffusing component comprising masking a substrate, such as a glass sheet, and etching the substrate such that the density of the resulting scattering centers increased as the distance from the light source increases.