Abstract:
A light diffusing component is disclosed. The light diffusing component comprises a substrate, such as glass, having a frontside, a backside spaced apart from the frontside, and an edge configured to receive a light source. The glass sheet includes at least one scattering layer having a plurality of light scattering centers etched into at least a portion of the frontside of the glass sheet. The scattering centers have an increased density as the distance from the edge increases and the scattering centers are randomly distributed in size and smaller than about 200 μm. Also disclosed is a method of manufacturing a light diffusing component comprising masking a substrate, such as a glass sheet, and etching the substrate such that the density of the resulting scattering centers increased as the distance from the light source increases.
Abstract:
An article that includes: a glass, glass-ceramic or ceramic substrate comprising a primary surface; at least one of an optical film and a scratch-resistant film disposed over the primary surface; and an easy-to-clean (ETC) coating comprising a fluorinated material that is disposed over an outer surface of the at least one of an optical film and a scratch-resistant film. The at least one of an optical film and a scratch-resistant film comprises an average hardness of 12 GPa or more. Further, the outer surface of the at least one of an optical film and a scratch-resistant film comprises a surface roughness (Rq) of less than 1.0 nm. Further, the at least one of an optical film and a scratch-resistant film comprises a total thickness of about 500 nm or more.
Abstract:
Articles utilizing polymeric dielectric materials for gate dielectrics and insulator materials are provided along with methods for making the articles. The articles are useful in electronics-based devices that utilize organic thin film transistors.
Abstract:
Articles utilizing polymeric dielectric materials for gate dielectrics and insulator materials are provided along with methods for making the articles. The articles are useful in electronics-based devices that utilize organic thin film transistors.
Abstract:
Articles utilizing polymeric dielectric materials for gate dielectrics and insulator materials are provided along with methods for making the articles. The articles are useful in electronics-based devices that utilize organic thin film transistors.
Abstract:
Described herein are coating compositions for protecting one-glass solution (OGS) glasses and other display glasses during processing. The coatings are non-reactive to typical indium-tin oxide touch components, metal electrodes, and black matrix inks, and can thus be used to over-coat these materials. In one aspect, the coating compositions described herein can be applied by a screen printing application process in a single layer or in multiple layers and are compatible with CNC edge grinding and acid etching. Further, the protective coatings are rigid, but not brittle, and are durable but still able to be processed rapidly. Additionally, the protective coatings are transparent, allowing alignment marks on the substrates to be visible. Finally, the protective coatings can easily be removed after substrate processing has been completed.
Abstract:
A glass etching medium and a method for etching the surface of a glass sheet to modify surface flaw characteristics without degrading the optical quality of the sheet surface, wherein the etching medium is a thickened aqueous acidic fluoride-containing paste comprising at least one dissolved, water-soluble, high-molecular-weight poly (ethylene oxide) polymer thickener.
Abstract:
An ultraviolet ink composition includes from 25 wt % to 50 wt % of a pigment dispersion, from greater than 0 wt % to 10 wt % of a photoinitiator package; from 10 wt % to 42 wt % of a reactive diluent; from 10 wt % to 20 wt % of a multifunctional monomer; and from 0 wt % to 25 wt % of a difunctional monomer. An ink primer includes from 2 wt % to 10 wt % of an adhesion promoter configured to bond to glass and from 90 wt % to 98 wt % of a solvent configured to promote bonding of the adhesion promoter to the glass. Another ink primer includes from 2 wt % to 10 wt % of an adhesion promoter configured to bond to glass, from greater than 0 wt % to 10 wt % of a photoinitiator package; and from 30 wt % to 45 wt % of a monofunctional monomer.
Abstract:
A glass article comprising a first surface and an opposing second surface, wherein the first surface comprises a plurality of light extraction features (220), ones of the plurality of light extraction features (220) having scattering particles and binder material, wherein the plurality of light extraction features produces a color shift Ay
Abstract:
An article that includes: a glass, glass-ceramic or ceramic substrate comprising a primary surface; at least one of an optical film and a scratch-resistant film disposed over the primary surface; and an easy-to-clean (ETC) coating comprising a fluorinated material that is disposed over an outer surface of the at least one of an optical film and a scratch-resistant film. The at least one of an optical film and a scratch-resistant film comprises an average hardness of 12 GPa or more. Further, the outer surface of the at least one of an optical film and a scratch-resistant film comprises a surface roughness (Rq) of less than 1.0 nm. Further, the at least one of an optical film and a scratch-resistant film comprises a total thickness of about 500 nm or more.