Abstract:
A method of cutting a laminate glass article is disclosed. The method comprises heating at least a portion of a laminate glass article to a reheat temperature. The laminate glass article has a core layer and a first cladding layer and is in stress characterized by a thermally-induced differential stress between the core layer and first cladding layer. The laminate glass article having been set at a setting temperature and the reheat temperature is lower than the setting temperature. The heating of the laminate glass article reduces the thermally-induced differential stress between the core layer and first cladding layer. The method may further comprise scoring the laminate glass article in the heated portion to create a score in the laminate glass article along a cutting line and bending the laminate glass article at the score to cut the glass.
Abstract:
Methods and apparatuses for separating sheets of brittle material are disclosed. According to one embodiment, a separation apparatus for separating a sheet of brittle material includes a first separation cam positioned adjacent to a sheet conveyance pathway and a second separation cam positioned opposite from and downstream of the first separation cam. The first and second separation cams may be rotated such that the contact faces of the separation cams periodically extend across a centerline of the conveyance pathway. Rotation of the first and second separation cams may be synchronized such that at least the portion of the contact face of the first separation cam and at least the portion of the contact face of the second separation cam periodically extend across the centerline of the conveyance pathway at a separation time and periodically do not extend across the centerline of the conveyance pathway at a non-separation time.
Abstract:
Apparatuses and methods for heating moving continuous glass ribbons at desired lines of separation and/or for separating glass sheets from continuous glass ribbons are disclosed. An apparatus includes a translatable support portion and a heating apparatus coupled to the support portion. The heating apparatus is configured to contact the continuous glass ribbon across at least a portion of a width of the continuous glass ribbon at the desired line of separation as the support portion moves in a draw direction, thereby preferentially applying heat to a first side of the continuous glass ribbon at the desired line of separation as the continuous glass ribbon moves in the draw direction.
Abstract:
Methods and apparatuses for separating sheets of brittle material are disclosed. According to one embodiment, a separation apparatus for separating a sheet of brittle material includes a first separation cam positioned adjacent to a sheet conveyance pathway and a second separation cam positioned opposite from and downstream of the first separation cam. The first and second separation cams may be rotated such that the contact faces of the separation cams periodically extend across a centerline of the conveyance pathway. Rotation of the first and second separation cams may be synchronized such that at least the portion of the contact face of the first separation cam and at least the portion of the contact face of the second separation cam periodically extend across the centerline of the conveyance pathway at a separation time and periodically do not extend across the centerline of the conveyance pathway at a non-separation time.
Abstract:
A method of cutting a glass sheet is disclosed. The method comprises heating a heating element to a heat temperature, which in turn heats a glass sheet along a desired cutting line, to a separation temperature. The glass sheet is subjected to non-destructive pressure at an edge on the cutting line. The non-destructive pressure may be applied by a tool with opposed sharp edges so long as the edges do not nick or otherwise score the glass sheet. A diagonal cutter may be utilized as the sharp-edged tool. After an adequate amount of heating time, the glass sheet will achieve the separation temperature and spontaneously separate along the heated cutting line.
Abstract:
Disclosed herein are methods and apparatuses for scoring a glass article, including positioning a plasma flame of a plasma torch and the glass article in close proximity to one another; and moving the plasma torch across a surface of the glass article to form at least one indentation in the surface, wherein the at least one indentation is formed from the plasma flame melting at least a portion of the glass surface to form a scoring line, without penetrating through a total thickness of the glass article.
Abstract:
Apparatuses and methods for heating moving continuous glass ribbons at desired lines of separation and/or for separating glass sheets from continuous glass ribbons are disclosed. An apparatus includes a translatable support portion and a heating apparatus coupled to the support portion. The heating apparatus is configured to contact the continuous glass ribbon across at least a portion of a width of the continuous glass ribbon at the desired line of separation as the support portion moves in a draw direction, thereby preferentially applying heat to a first side of the continuous glass ribbon at the desired line of separation as the continuous glass ribbon moves in the draw direction.
Abstract:
Disclosed herein are methods and apparatuses for scoring a glass article, including positioning a plasma flame of a plasma torch and the glass article in close proximity to one another; and moving the plasma torch across a surface of the glass article to form at least one indentation in the surface, wherein the at least one indentation is formed from the plasma flame melting at least a portion of the glass surface to form a scoring line, without penetrating through a total thickness of the glass article.
Abstract:
Apparatuses and methods for heating moving continuous glass ribbons at desired lines of separation and/or for separating glass sheets from continuous glass ribbons are disclosed. An apparatus includes a translatable support portion and a heating apparatus coupled to the support portion. The heating apparatus is configured to contact the continuous glass ribbon across at least a portion of a width of the continuous glass ribbon at the desired line of separation as the support portion moves in a draw direction, thereby preferentially applying heat to a first side of the continuous glass ribbon at the desired line of separation as the continuous glass ribbon moves in the draw direction.
Abstract:
A method of cutting a glass sheet is disclosed. The method comprises heating a heating element to a heat temperature, which in turn heats a glass sheet along a desired cutting line, to a separation temperature. The glass sheet is subjected to non-destructive pressure at an edge on the cutting line. The non-destructive pressure may be applied by a tool with opposed sharp edges so long as the edges do not nick or otherwise score the glass sheet. A diagonal cutter may be utilized as the sharp-edged tool. After an adequate amount of heating time, the glass sheet will achieve the separation temperature and spontaneously separate along the heated cutting line.