Abstract:
Methods of reshaping ferrules used in optical fiber cables assemblies are disclosed. The reshaping methods reduce a core-to-ferrule concentricity error (E), which improves coupling efficiency and optical transmission. The methods include measuring a true center of the ferrule, wherein the true center is based on an outer surface of the ferrule; and reshaping at least a portion of the ferrule to change the true center of the ferrule, wherein the reshaping includes enlarging a portion of the ferrule. A variety of reshaping techniques are also disclosed.
Abstract:
Systems and methods of measuring ferrule-core concentricity for an optical fiber held by a ferrule are disclosed. The method includes: generating ferrule distance data by measuring distances to a ferrule outside surface as a function of rotation angle using a distance sensor and rotating either the ferrule or the distance sensor about an axis of rotation that is off-center from the true ferrule axis; aligning the axis of rotation with the fiber core; using the ferrule distance data to determine a position of the true ferrule center relative to the optical fiber core; and measuring the concentricity as the distance between the true center of the ferrule and the optical fiber core.
Abstract:
Systems and methods of measuring ferrule-core concentricity for an optical fiber held by a ferrule are disclosed. The method includes: generating ferrule distance data by measuring distances to a ferrule outside surface as a function of rotation angle using a distance sensor and rotating either the ferrule or the distance sensor about an axis of rotation that is off-center from the true ferrule axis; aligning the axis of rotation with the fiber core; using the ferrule distance data to determine a position of the true ferrule center relative to the optical fiber core; and measuring the concentricity as the distance between the true center of the ferrule and the optical fiber core.
Abstract:
Methods of reshaping ferrules used in optical fiber cables assemblies are disclosed. The reshaping methods reduce a core-to-ferrule concentricity error (E), which improves coupling efficiency and optical transmission. The methods include measuring a true center of the ferrule, wherein the true center is based on an outer surface of the ferrule; and reshaping at least a portion of the ferrule to change the true center of the ferrule, wherein the reshaping includes enlarging a portion of the ferrule. A variety of reshaping techniques are also disclosed.
Abstract:
Methods of reshaping ferrules (20) used in optical fiber cables assemblies (170) are disclosed. The reshaping methods reduce a core-to-ferrule concentricity error (E), which improves coupling efficiency and optical transmission. The methods include measuring a distance (δ) and angular direction (θ) from a true center (30) of the ferrule to the core (46), wherein the true center (30) is based on an outer surface (26) of the ferrule. The methods also include reshaping at least a portion (26P) of the ferrule (20) to define a new true center (30′) of the ferrule (20) and reduce the distance (δ). A variety of reshaping techniques are also disclosed.
Abstract:
Optical fiber-based wireless systems and related components and methods support radio frequency (RF) communications with clients over optical fiber, including Radio-over-Fiber (RoF) communications. The systems may be provided as part of an indoor distributed antenna system (IDAS) to provide wireless communication services to clients inside a building or other facility. The communications can be distributed between a head end unit (HEU) that receives carrier signals from one or more service or carrier providers and converts the signals to RoF signals for distribution over optical fibers to end points, which may be remote antenna units (RAUs). A microprocessor-based control system or systems may also be employed. The control systems may include one or more microprocessors or microcontrollers in one or more of the components of the system that execute software instructions to control the various components and provide various features for the optical fiber-based distributed antenna systems.
Abstract:
Methods of reshaping ferrules (20) used in optical fiber cables assemblies (170) are disclosed. The reshaping methods reduce a core-to-ferrule concentricity error (E), which improves coupling efficiency and optical transmission. The methods include measuring a distance (δ) and angular direction (θ) from a true center (30) of the ferrule to the core (46), wherein the true center (30) is based on an outer surface (26) of the ferrule. The methods also include reshaping at least a portion (26P) of the ferrule (20) to define a new true center (30′) of the ferrule (20) and reduce the distance (δ). A variety of reshaping techniques are also disclosed.
Abstract:
Optical fiber-based wireless systems and related components and methods support radio frequency (RF) communications with clients over optical fiber, including Radio-over-Fiber (RoF) communications. The systems may be provided as part of an indoor distributed antenna system (IDAS) to provide wireless communication services to clients inside a building or other facility. The communications can be distributed between a head end unit (HEU) that receives carrier signals from one or more service or carrier providers and converts the signals to RoF signals for distribution over optical fibers to end points, which may be remote antenna units (RAUs). A microprocessor-based control system or systems may also be employed. The control systems may include one or more microprocessors or microcontrollers in one or more of the components of the system that execute software instructions to control the various components and provide various features for the optical fiber-based distributed antenna systems.
Abstract:
Methods of forming a ferrule are disclosed where the ferrule includes an inner member and an outer member. An optical fiber is secured in an axial bore of the inner member, and then offset of a core of the optical fiber from a geometric center of the inner member is determined. The outer member is then formed over the inner member to “correct” for this offset so that the core of the optical fiber ends up closer to the geometric center of the resulting ferrule. Related ferrules and cable assemblies including the same are also disclosed.
Abstract:
Methods of forming a ferrule are disclosed where the ferrule includes an inner member and an outer member. An optical fiber is secured in an axial bore of the inner member, and then offset of a core of the optical fiber from a geometric center of the inner member is determined. The outer member is then formed over the inner member to “correct” for this offset so that the core of the optical fiber ends up closer to the geometric center of the resulting ferrule. Related ferrules and cable assemblies including the same are also disclosed.