Abstract:
Described herein is a plunger of an injection molding machine, comprising a plunger body; a plunger tip that is a separate element from the plunger body and comprises an end surface configured to directly contact a molten material used in injection molding in the injection molding machine; wherein thermal conductance across the end surface of the plunger tip may be adjustable by moving the plunger tip relative to the plunger body such that temperature of the plunger tip may be adjusted during injection molding. When this plunger is used to injection molding of a BMG, it allows reduction of formation of crystalline phases near the plunger tip and allows replacement of the plunger tip without replacement of the plunger body.
Abstract:
Disclosed is an apparatus for loading one or more alloy ingots into a molding machine. The apparatus includes a holder configured to hold a plurality of the alloy ingots and dispense one or more of the alloy ingots into a melt zone of the molding machine through an opening in a mold of the machine. The holder is moved in a perpendicular direction with respect to an axis along a center of the opening in the mold between a first position in line with the opening in the mold to dispense one or more of the alloy ingots and a second position away from the opening in the mold. The apparatus can carry ingots of amorphous alloy material so that when the machine melts and molds the material, it forms a bulk amorphous alloy containing part.
Abstract:
Disclosed are embodiments of a temperature regulated vessel and a fluid delivery device, and methods of use thereof. The vessel can be used in an injection molding apparatus and include one or more temperature regulating lines configured to flow a fluid or liquid within the body (e.g., to heat a cold device). The fluid delivery device is mounted in the apparatus and has a collar with an opening extending therethrough to sealingly mate with the vessel. A delivery channel is provided within the collar for directing an input flow of fluid into the vessel. An exit channel can also be provided within the collar for directing an output flow of the fluid from the vessel.
Abstract:
Disclosed herein is a device comprising: vacuum chamber; a stage configured to receive BMG in a molten state or a BMG feedstock, configured to spin, and located in the vacuum chamber; a heater configured to melt the BMG feedstock or to keep BMG in a molten state molten; wherein the stage comprises one or more conduits therein and the conduits are configured to accommodate a cooling fluid. Also disclosed herein is a method of forming a solid BMG sheet, the method comprising: disposing BMG in a molten state onto a stage; spreading the BMG in a molten state into a sheet of BMG in a molten state by spinning the stage; cooling the sheet of BMG in a molten state to form a solid BMG sheet.
Abstract:
Disclosed herein is a device comprising: vacuum chamber; a stage configured to receive BMG in a molten state or a BMG feedstock, configured to spin, and located in the vacuum chamber; a heater configured to melt the BMG feedstock or to keep BMG in a molten state molten; wherein the stage comprises one or more conduits therein and the conduits are configured to accommodate a cooling fluid. Also disclosed herein is a method of forming a solid BMG sheet, the method comprising: disposing BMG in a molten state onto a stage; spreading the BMG in a molten state into a sheet of BMG in a molten state by spinning the stage; cooling the sheet of BMG in a molten state to form a solid BMG sheet.
Abstract:
Bulk metallic glass sheets and parts fabricated from individual bulk metallic glass fibers and tows are provided. Bulk metallic glass fibers and tows are used to prepare complex weave designs having desired thickness and fiber orientation for a particular use of a BMG feedstock. Appropriately designed bulk metallic glass weaves can be thermoplastically heated to form sheets and feedstock for parts having desired wall thickness and area coverage.
Abstract:
Described herein is a plunger of an injection molding machine, comprising a plunger body; a plunger tip that is a separate element from the plunger body and comprises an end surface configured to directly contact a molten material used in injection molding in the injection molding machine; wherein thermal conductance across the end surface of the plunger tip may be adjustable by moving the plunger tip relative to the plunger body such that temperature of the plunger tip may be adjusted during injection molding. When this plunger is used to injection molding of a BMG, it allows reduction of formation of crystalline phases near the plunger tip and allows replacement of the plunger tip without replacement of the plunger body.
Abstract:
BMG may be squeeze cast in a squeeze cast machine. The squeeze cast machine may have a vacuum chamber, a transfer sleeve entirely located inside the vacuum chamber, and a plunger inside the transfer sleeve. The transfer sleeve may be configured to receive BMG feedstock from outside the vacuum chamber. The vacuum chamber may prevent contamination of a BMG in a molten state. The plunger may push a BMG in a molten state into a mold.
Abstract:
Bulk metallic glass sheets and parts fabricated from individual bulk metallic glass fibers and tows are provided. Bulk metallic glass fibers and tows are used to prepare complex weave designs having desired thickness and fiber orientation for a particular use of a BMG feedstock. Appropriately designed bulk metallic glass weaves can be thermoplastically heated to form sheets and feedstock for parts having desired wall thickness and area coverage.
Abstract:
Disclosed is an apparatus for loading one or more alloy ingots into a molding machine. The apparatus includes a holder configured to hold a plurality of the alloy ingots and dispense one or more of the alloy ingots into a melt zone of the molding machine through an opening in a mold of the machine. The holder is moved in a perpendicular direction with respect to an axis along a center of the opening in the mold between a first position in line with the opening in the mold to dispense one or more of the alloy ingots and a second position away from the opening in the mold. The apparatus can carry ingots of amorphous alloy material so that when the machine melts and molds the material, it forms a bulk amorphous alloy containing part.