Abstract:
A wet mix elastomer composite comprising carbon black dispersed in an elastomer including a blend of a natural rubber and styrene-butadiene rubber. When the wet mix elastomer composite is processed with CTV Method 1, the vulcanized wet mix elastomer composite exhibits a resistivity that A) has a natural logarithm satisfying the equation ln(resistivity)≧−0.1(loading)+x, where x is 14, or B) is at least 2.9 times greater than the resistivity of a vulcanized dry mix elastomer composite having the same composition and prepared using Comparative CTV Method 1.
Abstract:
A method of producing an elastomer composite. The method includes A) combining a first fluid comprising elastomer latex with a second fluid comprising particulate filler; B) causing the elastomer latex to coagulate, thereby forming masterbatch crumb; C) bringing the masterbatch crumb to a water content of about 1 weight percent to about 20 weight percent, thereby forming a dewatered coagulum; D) removing water from the dewatered coagulum by subjecting the dewatered coagulum to mechanical energy, thereby causing the dewatered coagulum to heat as a result of friction, while allowing the dewatered coagulum to achieve a temperature of about 130° C. to about 190° C., wherein water content is reduced to about 0.5% to about 3% and wherein substantially all of the decrease in water content is accomplished by evaporation, thereby producing a masticated masterbatch; and E) subjecting the masticated masterbatch to at least an additional 0.3 MJ/kg of mechanical energy while further reducing the water content.
Abstract:
A method of producing an elastomer composite. The method includes A) combining a first fluid comprising elastomer latex with a second fluid comprising particulate filler; B) causing the elastomer latex to coagulate, thereby forming masterbatch crumb; C) bringing the masterbatch crumb to a water content of about 1 weight percent to about 20 weight percent, thereby forming a de-watered coagulum; D) removing water from the de-watered coagulum by subjecting the dewatered coagulum to mechanical energy, thereby causing the dewatered coagulum to heat as a result of friction, while allowing the dewatered coagulum to achieve a temperature of about 130° C. to about 190° C., wherein water content is reduced to about 0.5% to about 3% and wherein substantially all of the decrease in water content is accomplished by evaporation, thereby producing a masticated masterbatch; and E) subjecting the masticated masterbatch to at least an additional 0.3 MJ/kg of mechanical energy while further reducing the water content.
Abstract:
A method of producing a coagulated latex composite. A coagulating mixture of a first elastomer latex and a particulate filler slurry is flowed along a conduit, and a second elastomer latex is introduced into the flow of the coagulating mixture.
Abstract:
A wet mix elastomer composite comprising carbon black dispersed in an elastomer including a blend of a natural rubber and styrene-butadiene rubber. When the wet mix elastomer composite is processed with CTV Method 1, the vulcanized wet mix elastomer composite exhibits a resistivity that A) has a natural logarithm satisfying the equation ln(resistivity)≥−0.1(loading)+x, where x is 14, or B) is at least 2.9 times greater than the resistivity of a vulcanized dry mix elastomer composite having the same composition and prepared using Comparative CTV Method 1.