Abstract:
Various embodiments describe performing static timing analysis (STA) on a circuit design such that delay timing calculation results generated by an STA on the circuit design can be reused by subsequent STAs on the circuit design in place of performing a set of delay timing calculations on the circuit design.
Abstract:
Disclosed is an improved approach to implement sharing of delay calculations for replicated portions of a design, where input slews may be different between those replicated design portions. This allows the system to experience runtime improvements for timing analysis of electronic designs.
Abstract:
The present disclosure relates to a computer-implemented method for use with an electronic design. Embodiments include identifying, using one or more processors, a plurality of sibling nets associated with the electronic design and determining if the plurality of sibling nets have a same input slew rate. If the plurality of sibling nets do not have a same input slew rate, embodiments also include determining a delay calculation (DC) for each of the plurality of sibling nets. If the plurality of sibling nets do have a same input slew rate, embodiments further include sharing a stored DC with the plurality of sibling nets.
Abstract:
An approach is described for a method, system, and product for deferred merge based method for graph based analysis to reduce pessimism. According to some embodiments, the approach includes receiving design data, static and/or statistical timing analysis data, identifying cells and interconnects for performing graph based worst case timing analysis where merger of signals is deferred based on one or more conditions to reduce pessimism, and generating results thereof. Other additional objects, features, and advantages of the invention are described in the detailed description, figures, and claims.
Abstract:
A system and method for performing multi-mode multi-corner (MMMC) analysis such that multiple views or conditions can be analyzed together to improve runtime by taking advantage of common steps of analysis in different corners. Views are clustered based on their similarity to one another to take advantage of calculations and other tasks that may be shared between views during timing analysis. Then, during timing analysis, each net in the design is analyzed for each view.
Abstract:
A system and method are provided for generating a structurally-aware timing model for operation of a predetermined circuit design. The timing model is generated to have a plurality of timing arcs representing timing characteristics of the circuit design. Additionally, terminal pairs of the circuit design are evaluated to determine characteristic structural weights for selected paths through the circuit design. The structurally-aware timing model may then be incorporated into a top-level hierarchical circuit design for timing analyses and pessimism removal to arrive at realistic timing characteristics. The structural weights are particularly helpful in an AOCV-type pessimism removal post-process.