摘要:
The present teachings relate to an electrochemical system including an electrochemical device and multiple independent circuits which permit independent control of the reaction rates at different sections of the electrochemical device. The electrochemical device can be a fuel cell or an electrolyzer, and can include a common electrode in electrical communication with two or more independent circuits. The present teachings also relate to operating methods of the electrochemical system described.
摘要:
The present teachings relate to an electrochemical system including an electrochemical device and multiple independent circuits which permit independent control of the reaction rates at different sections of the electrochemical device. The electrochemical device can be a fuel cell or an electrolyzer, and can include a common electrode in electrical communication with two or more independent circuits. The present teachings also relate to operating methods of the electrochemical system described.
摘要:
The present teachings relate to an electrochemical system including an electrochemical device and multiple independent circuits which permit independent control of the reaction rates at different sections of the electrochemical device. The electrochemical device can be a fuel cell or an electrolyzer, and can include a common electrode in electrical communication with two or more independent circuits. The present teachings also relate to operating methods of the electrochemical system described.
摘要:
The present teachings relate to solid oxide fuel cells with internal reforming capability. The solid oxide fuel cell generally includes a cathode, an electrolyte, an anode, and a catalyst layer in contact with the anode. The catalyst layer can include a support membrane and a reforming catalyst layer associated with the support membrane. In some embodiments, the reforming catalyst can include one or more partial oxidation reforming catalysts. The present teachings also provide methods of making and operating the solid oxide fuel cells described above.
摘要:
The present teachings relate to solid oxide fuel cells with internal reforming capability. The solid oxide fuel cell generally includes a cathode, an electrolyte, an anode, and a catalyst layer in contact with the anode. The catalyst layer can include a support membrane and a reforming catalyst layer associated with the support membrane. In some embodiments, the reforming catalyst can include one or more partial oxidation reforming catalysts. The present teachings also provide methods of making and operating the solid oxide fuel cells described above.
摘要:
A porous discriminating layer is formed on a ceramic support having at least one porous wall by (a) establishing a flow of a gas stream containing agglomerates of particles and (b) calcining said deposited layer to form the discriminating layer. At least a portion of the particles are of a sinter-resistant material or a sinter-resistant material precursor. The particles have a size from 0.01 to 5 microns and the agglomerates have a size of from 10 to 200 microns. This method is an inexpensive and effective route to forming a discriminating layer onto the porous wall.
摘要:
A fuel injector is provided and includes a member defining a flowpath through which a first fluid flows, the flowpath having a cross-section with transverse elongate and short axes, a head defining a plenum storing a supply of a second fluid and a system fluidly coupled to the flowpath and the plenum to inject the second fluid from the plenum and into the flowpath at first and second locations along the elongate axis. The injected second fluid is formed into jets at the first and second locations, the first fluid entrains the jets such that the injected second fluid flows through the flowpath and mixes with the first fluid, and the short axis has a sufficient dimension such that the jets remain spaced from a sidewall of the member.
摘要:
A system and method for detecting an anode pressure sensor failure in a fuel cell system. The system and method include a controller that sets an initial minimum anode pressure sensor value and an initial maximum anode pressure sensor value. The controller determines a desired time interval for sampling anode pressure measurements and determines a total number of samples of anode pressure measurements to be collected by the controller from an anode pressure sensor. The controller also compares a pressure difference between the initial or a measured minimum anode pressure and the initial or a measured maximum anode pressure to a predetermined pressure difference threshold and sets a pressure sensor fault if the pressure difference between the initial or measured minimum anode pressure and the initial or maximum anode pressure is less than the predetermined pressure difference threshold.
摘要:
A skin is applied to a ceramic honeycomb. The skin is formed by applying a skin-forming composition and drying it. The skin-forming composition includes a carrier liquid, colloidal silica and/or colloidal alumina, and an inorganic filler. The filler includes an inorganic fiber. The filler may contain low aspect ratio particles that have the same or nearly the same CTE as the inorganic fiber. The filler may include a small proportion of a low aspect ratio filler particle that has a different CTE than the inorganic fiber.
摘要:
A system and method for detecting an anode pressure sensor failure in a fuel cell system. The system and method include a controller that sets an initial minimum anode pressure sensor value and an initial maximum anode pressure sensor value. The controller determines a desired time interval for sampling anode pressure measurements and determines a total number of samples of anode pressure measurements to be collected by the controller from an anode pressure sensor. The controller also compares a pressure difference between the initial or a measured minimum anode pressure and the initial or a measured maximum anode pressure to a predetermined pressure difference threshold and sets a pressure sensor fault if the pressure difference between the initial or measured minimum anode pressure and the initial or maximum anode pressure is less than the predetermined pressure difference threshold.