摘要:
Liquid precursors containing indium and selenium suitable for deposition on a substrate to form thin films suitable for semiconductor applications are disclosed. Methods of preparing such liquid precursors and method of depositing a liquid precursor on a substrate are also disclosed.
摘要:
Liquid precursors containing indium and selenium suitable for deposition on a substrate to form thin films suitable for semiconductor applications are disclosed. Methods of preparing such liquid precursors and method of depositing a liquid precursor on a substrate are also disclosed.
摘要:
Precursor compositions containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semi-conductor applications. Methods of forming the precursor compositions using primary amine solvents and methods of forming the thin films wherein the selection of temperature and duration of heating controls the formation of a targeted species of copper selenide.
摘要:
Precursor compositions containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semi-conductor applications. Methods of forming the precursor compositions using primary amine solvents and methods of forming the thin films wherein the selection of temperature and duration of heating controls the formation of a targeted species of copper selenide.
摘要:
Liquid precursors containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semiconductor applications are disclosed. Methods of preparing such liquid precursors and methods of depositing a precursor on a substrate are also disclosed.
摘要:
Dopant compositions comprising a semiconductor material are described. Examples of dopant compositions comprise a particulate dopant component and a liquid or paste component, or comprise a dopant component and a particulate silicon component. Methods of forming doped regions in a semiconductor substrate material using the dopant compositions are described. A dopant composition including a dopant particulate component is described as a dopant source in a method for the formation of radiation-fired or radiation-doped contacts, for example in the formation of laser-fired or laser-doped contacts. Examples of the method find application in relation to the manufacture of photovoltaic cells. The use of doped particulate material, for example a composition including doped silicon powder, may reduce the likelihood of damage to the substrate.
摘要:
Methods of forming metal contacts with metal inks in the manufacture of photovoltaic devices are disclosed. The metal inks are selectively deposited on semiconductor coatings by inkjet and aerosol apparatus. The composite is heated to selective temperatures where the metal inks burn through the coating to form an electrical contact with the semiconductor. Metal layers are then deposited on the electrical contacts by light induced or light assisted plating.
摘要:
A method for fabricating a contact (240) for a solar cell (200). The method includes providing a solar cell substrate (210) with a surface that is covered or includes an antireflective coating (220). For example, the substrate (210) may be positioned adjacent or proximate to an outlet of an inkjet printer (712) or other deposition device. The method continues with forming a burn through layer (230) on the coating (220) by depositing a metal oxide precursor (e.g., using an inkjet or other non-contact printing method to print or apply a volume of liquid or solution containing the precursor). The method includes forming a contact layer (240) comprising silver over or on the burn through layer (230), and then annealing is performed to electrically connect the contact layer (240) to the surface of the solar cell substrate (210) through a portion of the burn through layer (230) and the coating (220).
摘要:
A method (200) for depositing an aluminum film or contact (124). The method includes providing (230) a substrate (120) with a surface for receiving the aluminum film (124). The substrate (120) is heated (240) to a printing temperature such as over 150° C., and the method (200) includes depositing (250) a volume of ink upon a surface of the substrate (120). The ink (136) includes an organometallic aluminum complex or precursor, and the substrate surface temperature is selected or high enough to decompose the organometallic aluminum complex or precursor to provide aluminum of the film (124) and a gaseous byproduct. The depositing or printing (250) of the ink may be performed within an inert or substantially oxygen-free atmosphere (144). The ink (136) may be a solution of the organometallic aluminum complex and a solvent. The aluminum complex or precursor may include an amine compound and alane.
摘要:
A method for fabricating a contact (240) for a solar cell (200). The method includes providing a solar cell substrate (210) with a surface that is covered or includes an antireflective coating (220). For example, the substrate (210) may be positioned adjacent or proximate to an outlet of an inkjet printer (712) or other deposition device. The method continues with forming a burn through layer (230) on the coating (220) by depositing a metal oxide precursor (e.g., using an inkjet or other non-contact printing method to print or apply a volume of liquid or solution containing the precursor). The method includes forming a contact layer (240) comprising silver over or on the burn through layer (230), and then annealing is performed to electrically connect the contact layer (240) to the surface of the solar cell substrate (210) through a portion of the burn through layer (230) and the coating (220).