Abstract:
Improved compositions are described for the protection of gas turbine parts at elevated temperatures. The compositions are of the MCrAlY type, wherein M is Nickel, or Nickel in combination with cobalt and/or iron. The compositions further comprise a lanthanide, a group 4 metal selected from hafnium, zirconium, titanium, or a combination of these, and optionally, a group 14 element selected from silicon and/or germanium. The combination results in improved Al retention properties. Also disclosed herein are articles comprising the coatings.
Abstract:
Improved compositions are described for the protection of gas turbine parts at elevated temperatures. The compositions are of the MCrAlY type, wherein M is selected from nickel, or a combination of nickel with cobalt, iron, or combinations thereof. The compositions further comprise palladium, platinum, rhodium, or combinations thereof, hafnium, titanium, zirconium, or combinations thereof; and can further include silicon, germanium, or combinations thereof, wherein the composition results in improved Al retention properties. Also disclosed herein are articles comprising the coatings.
Abstract:
Improved compositions are described for the protection of gas turbine parts at elevated temperatures. The compositions are of the MCrAlY type, wherein M is Nickel, or Nickel in combination with cobalt and/or iron. The compositions further comprise a lanthanide, a group 4 metal selected from hafnium, zirconium, titanium, or a combination of these, and optionally, a group 14 element selected from silicon and/or germanium. The combination results in improved Al retention properties. Also disclosed herein are articles comprising the coatings.
Abstract:
Improved compositions are described for the protection of gas turbine parts at elevated temperatures. The compositions are of the MCrAlY type, wherein M is selected from nickel, or a combination of nickel with cobalt, iron, or combinations thereof. The compositions further comprise ruthenium, rhenium, or a combination thereof, a Group 4 metal (e.g., hafnium, zirconium, titanium), and can further include silicon and/or germanium, where the composition results in improved aluminum diffusion properties. Also disclosed herein are articles comprising the composition.
Abstract:
Improved compositions are described for the protection of gas turbine parts at elevated temperatures. The compositions are of the MCrAlY type, wherein M is selected from nickel, or a combination of nickel with cobalt, iron, or combinations thereof. The compositions further comprise ruthenium, rhenium, or a combination thereof, a Group 4 metal (e.g., hafnium, zirconium, titanium), and can further include silicon and/or germanium, where the composition results in improved aluminum diffusion properties. Also disclosed herein are articles comprising the composition.
Abstract:
A single-crystal seed, apparatus and process for producing a casting having a single-crystal (SX) microstructure. The seed has a geometry that includes a vertex capable of destabilizing an oxide film that forms at the interface between the seed and a molten metal during the casting process, and thereby promotes a continuous single-crystal grain growth and reduces grain misorientation defects that can initiate from the seed/metal interface.
Abstract:
The invention is a class of nickel-base alloys for gas turbine applications, comprising, by weight, about 13.7 to about 14.3 percent chromium, about 5.0 to about 10.0 percent cobalt, about 3.5 to about 5.2 percent tungsten, about 2.8 to about 5.2 percent titanium, about 2.8 to about 4.6 percent aluminum, about 0.0 to about 3.5 percent tantalum, about 1.0 to about 1.7 percent molybdenum, about 0.08 to about 0.13 percent carbon, about 0.005 to about 0.02 percent boron, about 0.0 to about 1.5 percent niobium, about 0.0 to about 2.5 percent hafnium, about 0.0 to about 0.04 percent zirconium, and the balance substantially nickel. The nickel-base alloys may be provided in the form of useful articles of manufacture, and which possess a unique combination of mechanical properties, microstructural stability, resistance to localized pitting and hot corrosion in high temperature corrosive environments, and high yields during the initial forming process as well as post-forming manufacturing and repair processes.
Abstract:
A thermal barrier coating (TBC) system is provided. The system includes at least one thermal barrier coating (TBC) bond coat layer formed over a substrate surface region. The TBC bond coat layer includes at least one TBC bond coat material. The TBC bond coat material is a nickel-chromium-aluminum-yttrium (NiCrAlY) composition that also includes silicon (Si), hafnium (Hf) and less than 10 weight percent (wt %) cobalt (Co). The TBC system further includes at least one top coat layer formed over the TBC bond coat layer.
Abstract:
A thermal barrier coating (TBC) system is provided. The system includes at least one thermal barrier coating (TBC) bond coat layer formed over a substrate surface region. The TBC bond coat layer includes at least one TBC bond coat material. The TBC bond coat material is a nickel-chromium-aluminum-yttrium (NiCrAlY) composition that also includes silicon (Si), hafnium (Hf) and less than 10 weight percent (wt %) cobalt (Co). The TBC system further includes at least one top coat layer formed over the TBC bond coat layer.
Abstract:
In one embodiment, a method for forming an article with a diffusion portion comprises: forming a slurry comprising chromium and silicon, applying the slurry to the article, and heating the article to a sufficient temperature and for a sufficient period of time to diffuse chromium and silicon into the article and form a diffusion portion comprising silicon and a microstructure comprising α-chromium. In one embodiment, a gas turbine component comprises: a superalloy and a diffusion portion having a depth of less than or equal to 60 μm measured from the superalloy surface into the gas turbine component. The diffusion portion has a diffusion surface having a microstructure comprising greater than or equal to 40% by volume α-chromium.