Abstract:
A component of a fuel combustion system of an engine includes a body with a knurled conduction surface. The body is hollow and defines a central longitudinal axis. The body includes an outer surface, an inner surface, and an orifice surface. The outer surface defines an outer opening. The inner surface defines an interior chamber and an inner opening. The orifice surface defines an orifice passage extending between, and in communication with, the outer opening and the inner opening. The orifice passage is in communication with the interior chamber via the inner opening. The outer surface includes the knurled conduction surface. The knurled conduction surface has a boundary surface and a plurality of protrusions that project outwardly from the boundary surface. At least a portion of the knurled conduction surface is axially aligned with the interior chamber along the central longitudinal axis.
Abstract:
A sparkplug assembly having a prechamber volume is operatively associated with the combustion chamber of an internal combustion engine such that the prechamber volume is in fluid communication with the combustion chamber. To purge exhaust gasses from the prechamber volume prior to ignition, the sparkplug assembly is operatively associated with a high-pressure air/fuel source that directs a pressurized air/fuel purge charge to the prechamber volume. The pressurized air/fuel purge charge may be at stoichiometric conditions. The high-pressure air/fuel source is configured to direct the pressurized air/fuel purge charge during at least a portion of the compression stroke to maintain a largely stoichiometric mixture of air and fuel in the prechamber volume.
Abstract:
A fuel supply system for a reciprocating-piston engine includes a storage tank; a wall of the storage tank defining a first aperture and a second aperture therethrough; a first fuel injector fluidly coupled with the first aperture of the storage tank via a pressure control module and a first fuel injector supply conduit; a pump fluidly coupled with the second aperture of the storage tank; and a second fuel injector fluidly coupled with an outlet port of the pump via a second fuel injector supply conduit. The pressure control module is configured to maintain a pressure in the first fuel injector supply conduit within a pressure range that includes a pressure value that is less than a pressure inside the storage tank. The pump is configured to maintain a pressure inside the second fuel injector supply conduit that is greater than the pressure inside the first fuel injector supply conduit.
Abstract:
A nozzle for a prechamber assembly of an engine includes a nozzle body. The nozzle body is hollow and includes an outer surface and an inner surface. The outer surface defines an outer opening, and the inner surface defines an interior chamber and an inner opening. The nozzle body includes an orifice surface which defines an orifice passage extending between, and in communication with, the outer and inner openings. The orifice passage is in communication with the interior chamber via the inner opening. The orifice surface is continuously curved. The inner surface of the nozzle body can include a groove surface that is contiguous with the orifice surface. The groove surface defines an orifice groove in communication with the interior chamber and with the orifice passage.
Abstract:
A nozzle for a prechamber assembly of an engine includes a nozzle body. The nozzle body is hollow and includes an outer surface and an inner surface. The outer surface defines an outer opening, and the inner surface defines an interior chamber and an inner opening. The nozzle body includes an orifice surface which defines an orifice passage extending between, and in communication with, the outer and inner openings. The orifice passage is in communication with the interior chamber via the inner opening. The orifice surface is continuously curved. The inner surface of the nozzle body can include a groove surface that is contiguous with the orifice surface. The groove surface defines an orifice groove in communication with the interior chamber and with the orifice passage.
Abstract:
A nozzle for a prechamber assembly of an engine includes a nozzle body which is hollow and includes an outer surface, an inner surface, and an orifice surface. The outer surface defines an outer orifice opening, and the inner surface defines an interior chamber and an inner orifice opening. The orifice surface defines an orifice passage extending between, and in communication with, the outer orifice opening and the inner orifice opening. The orifice passage is in communication with the interior chamber via the inner orifice opening. The nozzle body includes a coolant surface which defines a coolant passage within the nozzle body. The coolant surface includes an orifice interface portion disposed adjacent the orifice surface such that the orifice surface and the orifice interface portion of the coolant surface are in heat-transferring relationship with each other.
Abstract:
Systems and methods for operating an engine include controlling a temperature of recirculated exhaust gas to achieve a predetermined recirculated exhaust gas temperature. A mixture of air and temperature-controlled recirculated exhaust gas are admitted in a combustion chamber and a gaseous fuel injector delivers gaseous fuel during an intake stroke. A diesel fuel injector is activated for a first time to deliver a pre-pilot diesel quantity directly into the combustion chamber at an early stage of a compression stroke, and is activated again for a second time to deliver a pilot diesel quantity directly into the combustion chamber at a later stage of the compression stroke. A total air/fuel ratio within the combustion chamber upon completion of the second diesel fuel injector activation is lean. The air/fuel mixture is combusted during a combustion stroke, and combustion products are removed during an exhaust stroke.
Abstract:
A fuel supply system for a reciprocating-piston engine includes a storage tank; a wall of the storage tank defining a first aperture and a second aperture therethrough; a first fuel injector fluidly coupled with the first aperture of the storage tank via a pressure control module and a first fuel injector supply conduit; a pump fluidly coupled with the second aperture of the storage tank; and a second fuel injector fluidly coupled with an outlet port of the pump via a second fuel injector supply conduit. The pressure control module is configured to maintain a pressure in the first fuel injector supply conduit within a pressure range that includes a pressure value that is less than a pressure inside the storage tank. The pump is configured to maintain a pressure inside the second fuel injector supply conduit that is greater than the pressure inside the first fuel injector supply conduit.
Abstract:
A nozzle for a prechamber assembly of an engine includes a nozzle body which is hollow and includes an outer surface, an inner surface, and an orifice surface. The outer surface defines an outer orifice opening, and the inner surface defines an interior chamber and an inner orifice opening. The orifice surface defines an orifice passage extending between, and in communication with, the outer orifice opening and the inner orifice opening. The orifice passage is in communication with the interior chamber via the inner orifice opening. The nozzle body includes a coolant surface which defines a coolant passage within the nozzle body. The coolant surface includes an orifice interface portion disposed adjacent the orifice surface such that the orifice surface and the orifice interface portion of the coolant surface are in heat-transferring relationship with each other.
Abstract:
A component of a fuel combustion system of an engine includes a body with a knurled conduction surface. The body is hollow and defines a central longitudinal axis. The body includes an outer surface, an inner surface, and an orifice surface. The outer surface defines an outer opening. The inner surface defines an interior chamber and an inner opening. The orifice surface defines an orifice passage extending between, and in communication with, the outer opening and the inner opening. The orifice passage is in communication with the interior chamber via the inner opening. The outer surface includes the knurled conduction surface. The knurled conduction surface has a boundary surface and a plurality of protrusions that project outwardly from the boundary surface. At least a portion of the knurled conduction surface is axially aligned with the interior chamber along the central longitudinal axis.