摘要:
A non-volatile split-gate memory cell 8 which can be programmed with only a five volt power supply and is fabricated using standard transistor processing methods, comprises a semiconductor substrate 10 with a source 12 and a drain 14 region separated by a channel region 16. A conductive floating gate 18 is formed over a portion 16a of the channel region 16 and separated by a FAMOS oxide 20. A conductive control gate 22 is formed over but electrically insulated from the floating gate 18 and over a second portion 16b of the channel region 16. The control gate 22 is separated from the second portion of the channel 16b by a pass oxide 26 which is thicker than the FAMOS oxide 20. Other embodiments and processes are also disclosed.
摘要:
A non-volatile split-gate memory cell 8 which can be programmed with only a five volt power supply and is fabricated using standard transistor processing methods, comprises a semiconductor substrate 10 with a source 12 and a drain 14 region separated by a channel region 16. A conductive floating gate 18 is formed over a portion 16a of the channel region 16 and separated by a FAMOS oxide 20. A conductive control gate 22 is formed over but electrically insulated from the floating gate 18 and over a second portion 16b of the channel region 16. The control gate 22 is separated from the second portion of the channel 16b by a pass oxide 26 which is thicker than the FAMOS oxide 20. Other embodiments and processes are also disclosed.
摘要:
A non-volatile split-gate memory cell 8 which can be programmed with only a five volt power supply and is fabricated using standard transistor processing methods, comprises a semiconductor substrate 10 with a source 12 and a drain 14 region separated by a channel region 16. A conductive floating gate 18 is formed over a portion 16a of the channel region 16 and separated by a FAMOS oxide 20. A conductive control gate 22 is formed over but electrically insulated from the floating gate 18 and over a second portion 16b of the channel region 16. The control gate 22 is separated from the second portion of the channel 16b by a pass oxide 26 which is thicker than the FAMOS oxide 20. Other embodiments and processes are also disclosed.
摘要:
A system and method is provided for detecting an over-current condition in a power field-effect transistor (FET). In one embodiment, an over-current detection circuit for detecting an over-current condition in a power FET comprises a current generator circuit operative to generate a reference current and a plurality of matched FETs operative to receive the reference current and provide a reference voltage, the matched FETs being matched to each other and to the power FET. The over-current detection circuit also comprises a comparator operative to measure a drain-to-source voltage of the power FET and to provide an output that indicates that the drain-to-source voltage of the power FET has exceeded the reference voltage.
摘要:
A forward biased diode 40 is used to charge up a photodiode 26 rather than an NMOS transistor. This photodiode charging mechanism increases the dynamic range and optical response of active pixel arrays, and improves the scalability of the pixel element.
摘要:
The invention comprises an integrated circuit including integral high and low-voltage peripheral transistors and a method for making the integrated circuit. In one aspect of the invention, a method of integrating high and low voltage transistors into a floating gate memory array comprises the steps of forming a tunnel oxide layer outwardly from a semiconductor substrate, forming a floating gate layer disposed outwardly from the tunnel oxide layer and forming an insulator layer disposed outwardly from the floating gate layer to create a first intermediate structure. The method further includes the steps of masking a first region and a second region of the first intermediate structure leaving a third region unmasked, removing at least a portion of the insulator layer, the floating gate layer and the tunnel oxide layer from the third region and forming a first dielectric layer disposed outwardly from the substrate in a region approximately coextensive with the third region. The second region and the third region are masked, leaving the first region unmasked. Then, at least a portion of the insulator layer, the floating gate layer and the tunnel oxide layer is removed from the first region. A second dielectric layer is formed outwardly from the substrate and the first dielectric layer in a region approximately coextensive with the first region and the third regions, respectively.
摘要:
This invention provides a cost-effective, easy-to-integrate Flash EPROM cell array. Starting with a substrate (31) of first conductivity-type, a first diffusion (30) of second conductivity-type forms the sources (11), and the connections between sources, of all of the memory cells (10) of the array. A second diffusion (32) of first conductivity-type forms the channel of at least one memory cell (10) in the array. A floating gate (13) and a control gate (14) of that memory cell (10) are located over, and insulated from, a junction of the first diffusion and the second diffusion. A third diffusion (33) of second conductivity-type is isolated in the second diffusion (32) to form the drain (12) of the memory cell (10). During operation, only positive voltages may be used for programming and erasing of the cells (10), thus eliminating the need for negative voltages and for triple-well diffusions. The cell array of this invention requires little or no current for Fowler-Nordheim erase operation. Therefore, there is no need for wordline (15) decoding of large arrays. In addition to the above features, use of the cell array of this invention saves space by eliminating, in certain types of prior-art arrays, the need for space-consuming columnar metal source lines. In that same type of array, a self-aligned-source etch step and a self-aligned-source implant step are eliminated.
摘要:
In one embodiment, a non-volatile memory cell structure 10 comprises heavily doped source 11 and drain 12 regions formed in the surface of a semiconductor substrate 8 and separated by a channel region 21. A floating gate 13 is formed over and insulated from the channel region 21 and a control gate 14 is formed over and insulated from the floating gate 13. A lightly doped region 20 is formed in the channel 21 beneath the floating gate 13 and adjoining the source region 11. The lightly doped region 20 is spaced from the surface of said substrate 8. Other embodiments and processes are also disclosed.
摘要:
The method of this invention allows use of a smaller wordline voltage Vp1 during programming. In addition, the method results in a relatively narrow distribution of threshold voltages Vt when used to flash program an array of memory cells (10). The method of this invention increases compaction gate-current efficiency by reverse biasing the source (11)/substrate (23) junction of the cell being programmed. The reverse biasing is accomplished, for example, by applying a bias voltage to the source (11 ) or by placing a diode (27), a resistor (29) or other impedance in series with the source (11). The reverse biasing limits the source current (Is) of cell being programmed and of the entire array during flash-programming compaction.
摘要:
The erasing method of this invention results in a relatively narrow distribution of threshold voltages when used to flash erase a group of floating-gate-type memory cells (10). Each cell includes a control gate (14), a source (11 ) and a drain (12). The method comprises connecting the control gates (14) to a control-gate voltage (Vg), connecting the sources (11 ) to a source voltage (Vs) having a higher potential than the, control-gate voltage (Vg) and connecting the drains (12) to a drain subcircuit (DS) having, in at least one embodiment, a potential (Vd) between the control-gate voltage (Vg) and the source voltage (Vs), the drain subcircuit (DS) having a sufficiently low impedance to allow current flow between the sources (11) and drains (12) at a time during the erasing operation. The drain subcircuit (DS) allows for optimum threshold voltage distribution and a part of the drain potential (Vd) may be fed back to arrest the erase process at an optimum point.