摘要:
The use of direct-write nanolithography to generate anchored, nanoscale patterns of nucleic acid on different substrates is described, including electrically conductive and insulating substrates. Modification of nucleic acid, including oligonucleotides, with reactive groups such as thiol groups provides for patterning with use of appropriate scanning probe microscopic tips under appropriate conditions. The reactive groups provide for chemisorption or covalent bonding to the substrate surface. The resulting nucleic acid features, which exhibit good stability, can be hybridized with complementary nucleic acids and probed accordingly with use of, for example, nanoparticles functionalized with nucleic acids. Patterning can be controlled by selection of tip treatment, relative humidity, and nucleic acid structure.
摘要:
The use of direct-write nanolithography to generate anchored, nanoscale patterns of nucleic acid on different substrates is described, including electrically conductive and insulating substrates. Modification of nucleic acid, including oligonucleotides, with reactive groups such as thiol groups provides for patterning with use of appropriate scanning probe microscopic tips under appropriate conditions. The reactive groups provide for chemisorption or covalent bonding to the substrate surface. The resulting nucleic acid features, which exhibit good stability, can be hybridized with complementary nucleic acids and probed accordingly with use of, for example, nanoparticles functionalized with nucleic acids. Patterning can be controlled by selection of tip treatment, relative humidity, and nucleic acid structure.
摘要:
The present invention relates to the use of direct-write lithographic printing of proteins and peptides onto surfaces. In particular, the present invention relates to methods for creating protein and peptide arrays and compositions derived therefrom. Nanoscopic tips can be used to deposit the peptide or protein onto the surface to produce a pattern. The pattern can be dots or lines having dot diameter and line width of less than 1,000 nm. The tips and the substrate surfaces can be adapted for the peptide and protein lithography.
摘要:
The use of direct-write nanolithography to generate anchored, nanoscale patterns of nucleic acid on different substrates is described, including electrically conductive and insulating substrates. Modification of nucleic acid, including oligonucleotides, with reactive groups such as thiol groups provides for patterning with use of appropriate scanning probe microscopic tips under appropriate conditions. The reactive groups provide for chemisorption or covalent bonding to the substrate surface. The resulting nucleic acid features, which exhibit good stability, can be hybridized with complementary nucleic acids and probed accordingly with use of, for example, nanoparticles functionalized with nucleic acids. Patterning can be controlled by selection of tip treatment, relative humidity, and nucleic acid structure.