Abstract:
A new, low temperature method for directly writing conductive metal traces with micron and sub-micron sized features. In this method, a flat beam is used, such as an AFM cantilever, with or without a tip, to draw traces of metal precursor ink onto a substrate. The dimensions of the metal traces can be directly controlled by the geometry of the cantilever, so that one can controllably deposit traces from 1 micron to over 100 microns wide with microfabricated cantilevers. Cantilevers with sharp tips can be used to further shrink the minimum features sizes to sub-micron scale. The height of the features can be increased by building layers of similar or different material.
Abstract:
A novel method of transporting ink to a substrate with dip-pen nanolithographic (DPN) stamp tips coated with polymer (e.g., polydimethylsiloxane (PDMS), etc.). This kind of tip adsorbs chemicals (“inks”) easily and is used to generate DPN nanopatterns that are imaged with the same tip after a DPN process. This method builds a bridge between micro-contact printing (μCP) and DPN, making it possible for one to easily generate smaller structures of any molecules that have been patterned by the μCP technique. The easy tip-coating and writing process enriches the state-of-the-art DPN technique. The sub-100 nm DPN resolution obtained by using this kind of novel tip is comparable to that with a conventional Si3N4 probe tip. Importantly, the unique stamp tip was able to transfer solvent (e.g., liquid “ink”) onto a substrate, resulting in fabrication of hollow nanostructures with only one DPN holding/writing step. Inks comprising metals and sol-gel materials are noted, as well as applications in photomask repair, enhancement, and fabrication.
Abstract:
Methods for providing pharmaceutical compositions and objects with identification regions and identification features which are difficult to detect. Microlithography, nanolithography, and stamping methods are used. The identification features can be positive protrusions or negative indentations with respect to the surface. The identification regions can comprise bar codes and holograms. DPN printing or other lithographies such as electron beam lithography, optical lithography, or nanoimprint lithography can be used to prepare stamps, which are then used to prepare the identification features. Redundant patterns can be formed. The invention is useful for counterfeit prevention. An apparatus for stamping the identification features is also described.
Abstract:
The present invention relates to the use of direct-write lithographic printing of proteins and peptides onto surfaces. In particular, the present invention relates to methods for creating protein and peptide arrays and compositions derived therefrom. Nanoscopic tips can be used to deposit the peptide or protein onto the surface to produce a pattern. The pattern can be dots or lines having dot diameter and line width of less than 1,000 nm. The tips and the substrate surfaces can be adapted for the peptide and protein lithography.
Abstract:
The use of direct-write nanolithography to generate anchored, nanoscale patterns of nucleic acid on different substrates is described, including electrically conductive and insulating substrates. Modification of nucleic acid, including oligonucleotides, with reactive groups such as thiol groups provides for patterning with use of appropriate scanning probe microscopic tips under appropriate conditions. The reactive groups provide for chemisorption or covalent bonding to the substrate surface. The resulting nucleic acid features, which exhibit good stability, can be hybridized with complementary nucleic acids and probed accordingly with use of, for example, nanoparticles functionalized with nucleic acids. Patterning can be controlled by selection of tip treatment, relative humidity, and nucleic acid structure.
Abstract:
Methods for providing pharmaceutical compositions and objects with identification regions and identification features which are difficult to detect. Microlithography, nanolithography, and stamping methods are used. The identification features can be positive protrusions or negative indentations with respect to the surface. The identification regions can comprise bar codes and holograms. DPN printing or other lithographies such as electron beam lithography, optical lithography, or nanoimprint lithography can be used to prepare stamps, which are then used to prepare the identification features. Redundant patterns can be formed. The invention is useful for counterfeit prevention. An apparatus for stamping the identification features is also described.
Abstract:
The use of direct-write nanolithography to generate anchored, nanoscale patterns of nucleic acid on different substrates is described, including electrically conductive and insulating substrates. Modification of nucleic acid, including oligonucleotides, with reactive groups such as thiol groups provides for patterning with use of appropriate scanning probe microscopic tips under appropriate conditions. The reactive groups provide for chemisorption or covalent bonding to the substrate surface. The resulting nucleic acid features, which exhibit good stability, can be hybridized with complementary nucleic acids and probed accordingly with use of, for example, nanoparticles functionalized with nucleic acids. Patterning can be controlled by selection of tip treatment, relative humidity, and nucleic acid structure.
Abstract:
Nanolithographic deposition of metallic nanostructures using coated tips for use in microelectronics, catalysis, and diagnostics. AFM tips can be coated with metallic precursors and the precursors patterned on substrates. The patterned precursors can be converted to the metallic state with application of heat. High resolution and excellent alignment can be achieved.
Abstract:
Methods for providing pharmaceutical compositions and objects with identification regions and identification features which are difficult to detect. Microlithography, nanolithography, and stamping methods are used. The identification features can be positive protrusions or negative indentations with respect to the surface. The identification regions can comprise bar codes and holograms. DPN printing or other lithographies such as electron beam lithography, optical lithography, or nanoimprint lithography can be used to prepare stamps, which are then used to prepare the identification features. Redundant patterns can be formed. The invention is useful for counterfeit prevention. An apparatus for stamping the identification features is also described.
Abstract:
A method for direct-write patterning comprises providing a cantilever having a cantilever end, wherein the cantilever is a tipless cantilever; providing an ink disposed at the cantilever end; providing a substrate surface; and moving the cantilever end or moving the substrate surface so that ink is delivered from the cantilever end to the substrate surface. A method for direct writing of conductive metal or metal precursor comprises providing a tipless cantilever having a cantilever end; providing an ink disposed at the cantilever end, wherein the ink comprises one or more metals, one or more metallic nanoparticles, or one or more metal salts; providing a substrate surface; and contacting the cantilever end and the substrate surface so that ink is delivered from the cantilever end to the substrate surface.