摘要:
A light guided pixel having a guide layer and a light detector layer. The guide layer has a light guide. The light detector layer has a light detecting element that receives light channeled by the light guide. The light guide may include a filter for channeling emissions to the light detecting element.
摘要:
Embodiments of the present invention relate to a delayed emission detection device comprising a time-gated illumination source configured to provide excitation light to fluorophore during an excitation period and a light detector configured to receive emissions released from the fluorophore during a collection period after the excitation period.
摘要:
Embodiments of the present invention relate to holographically illuminated imaging devices including a holographic element for transforming an illumination beam into a focal array of light spots, a scanning mechanism for moving an object across one or more light spots in the focal array of light spots, and a light detector for detecting light associated with the focal array of light spots and generating light data associated with the received light.
摘要:
Probes, and systems and methods for optically scanning a conical volume in front of a probe, for use with an imaging modality, such as Optical Coherence Tomography (OCT). A probe includes an optical fiber having a proximal end and a distal end and defining an axis, with the proximal end of the optical fiber being proximate a light source, and the distal end having a first angled surface. A refractive lens element is positioned proximate the distal end of the optical fiber. The lens element and the fiber end are both configured to separately rotate about the axis so as to image a conical scan volume when light is provided by the source. Reflected light from a sample under investigation is collected by the fiber and analyzed by an imaging system. Such probes may be very compact, e.g., having a diameter 1 mm or less, and are advantageous for use in minimally invasive surgical procedures.
摘要:
Embodiments of the present invention relate to a high-resolution imaging device with wide field and extended focus comprising a beam generator for generating a plurality of nondiffracting beams and a scanning mechanism for moving the plurality of nondiffracting beams relative to the object to illuminate a volume of the object. The high-resolution imaging device also comprises surface element and a body having a light detector layer outside the surface element. The light detector layer has a light detector configured to measure light data associated with the plurality of nondiffracting beams illuminating the volume of the object. In some cases, the high-resolution imaging device also includes a lens inside of the light detector layer. The lens is configured to focus the light on the light detector surface.
摘要:
A light guided pixel having a guide layer and a light detector layer. The guide layer has a light guide. The light detector layer has a light detecting element that receives light channeled by the light guide. The light guide may include a filter for channeling emissions to the light detecting element.
摘要:
A method and device realize shallow gratings-based planar beam splitter/combiner. Non-trivial phase shifts between different ports of resulting interferometers are used to acquire full-field phase measurements. The non-trivial phase shifts between different ports of the planar beam splitter/combiner can be adjusted by simply shearing one grating with respect to the second grating. The two shallow diffraction gratings are harmonically-related and can be recorded on a single substrate for compact interferometric based schemes. During the recording process, the two gratings are aligned such that the grating planes and the grating vectors are parallel to that of each other. The relative phase of the recording beams controls the shearing between the recorded harmonically-related shallow phase gratings. The relative shearing of the two gratings defines the non-trivial phase shift between different ports of the compact planar beam splitter/combiner.
摘要:
A Talbot-illuminated imaging system for focal plane tuning, the device comprising a Talbot element, a tunable illumination source, a scanning mechanism, a light detector, and a processor. The element generate san array of focused light spots at a focal plane. The tunable illumination source shifts the focal plane to a plane of interest by adjusting a wavelength of light incident the Talbot element. The scanning mechanism scans an object across an array of focused light spots in a scanning direction. The light detector determines time-varying light data associated with the array of focused light spots as the object scans across the array of light spots. The processor constructs an image of the object based on the time-varying data.
摘要:
Embodiments of the present invention relate to holographically illuminated imaging devices including a holographic element for transforming an illumination beam into a focal array of light spots, a scanning mechanism for moving an object across one or more light spots in the focal array of light spots, and a light detector for detecting light associated with the focal array of light spots and generating light data associated with the received light.
摘要:
Embodiments of the present invention relate to a high-resolution imaging device with wide field and extended focus comprising a beam generator for generating a plurality of nondiffracting beams and a scanning mechanism for moving the plurality of nondiffracting beams relative to the object to illuminate a volume of the object. The high-resolution imaging device also comprises surface element and a body having a light detector layer outside the surface element. The light detector layer has a light detector configured to measure light data associated with the plurality of nondiffracting beams illuminating the volume of the object. In some cases, the high-resolution imaging device also includes a lens inside of the light detector layer. The lens is configured to focus the light on the light detector surface.