摘要:
A method of forming a MEMS (Micro-Electro-Mechanical System), includes forming an ambient port through a MEMS cap which defines a cavity containing a plurality of MEMS actuators therein; and bonding a lid arrangement to the MEMS cap to hermetically seal the ambient port.
摘要:
A microfluidic device includes first and second substrates bonded together. The first substrate has first and second opposed surfaces. A die pocket is formed in the first opposed surface, and a through slot extends from the die pocket to the second opposed surface. The second substrate is bonded to the second opposed surface of the first substrate whereby an outlet of a channel formed in the second substrate substantially aligns with the through slot. The channel of the second substrate has an inlet that is larger than the outlet.
摘要:
A method of forming a fluid ejection device includes forming a pair of first glass layers and forming a second glass layer. Each first glass layer includes a first side and a second side with the second side defining a first fluid flow structure. The second glass layer includes a first side and a second side opposite the first side, with each respective first side and second side defining a second fluid flow structure. The second glass layer is bonded in a sandwiched position between the respective first glass layers with each respective second fluid flow structure of the second glass layer in fluid communication with the respective first fluid flow structure of the respective first glass layers to define a fluid flow pathway for ejecting a fluid.
摘要:
A method for preparing a microelectromechanical system (MEMS) device for subsequent processing is disclosed. The method includes establishing an anti-stiction material on exposed surfaces of the MEMS device. The exposed surfaces include at least an interior surface of a chamber and an external surface of the MEMS device. The anti-stiction material is selectively removed from at least a portion of the external surface via a plasma sputtering process under controlled conditions.
摘要:
A micro-optoelectromechanical system (MOEMS) package for a light modulator includes a sealed modulator package containing a light modulator sealed under a first transparent lid; a secondary, larger package containing the sealed modulator package, the secondary package comprising a seal and a second transparent lid; and an optical material disposed between the first transparent lid and the second transparent lid, where the optical material is a solid, gel or liquid. An alternatively micro-optoelectromechanical system (MOEMS) package for a light modulator includes a sealed modulator package containing a light modulator sealed under a first transparent lid; a secondary, larger package containing the sealed modulator package; and a desiccant or getter material disposed inside the secondary package with the modulator package.
摘要:
A microfluidic device includes first and second glass substrates bonded together. The first glass substrate has first and second opposed surfaces. A die pocket is formed in the first opposed surface, and a through slot extends from the die pocket to the second opposed surface. The second glass substrate is bonded to the second opposed surface of the first glass substrate whereby an outlet of a channel formed in the second glass substrate substantially aligns with the through slot. The channel of the second glass substrate has an inlet that is larger than the outlet.
摘要:
A method of forming a fluid ejection device includes forming a pair of first glass layers and forming a second glass layer. Each first glass layer includes a first side and a second side with the second side defining a first fluid flow structure. The second glass layer includes a first side and a second side opposite the first side, with each respective first side and second side defining a second fluid flow structure. The second glass layer is bonded in a sandwiched position between the respective first glass layers with each respective second fluid flow structure of the second glass layer in fluid communication with the respective first fluid flow structure of the respective first glass layers to define a fluid flow pathway for ejecting a fluid.
摘要:
This invention provides a system and method for hermetically sealing a post media-filled package with a metal cap. The method can include the operation of filling a MEMS package through a fill port with at least one medium. A further operation can be plugging the fill port in the MEMS package with a sealant. Another operation can include depositing a metal cap over the sealant to hermetically seal the fill port.
摘要:
An apparatus includes a Micro Electrical Mechanical System (MEMS) having electrical contacts and a MEMS device in electrical communication with the electrical contacts. A lid is oriented over the MEMS device and not the electrical contacts. The lid has a base region and a top region, the base region being wider in dimension than the top region and oriented in closer proximity to the MEMS device than the top region.
摘要:
A microfluidic device includes first and second glass substrates bonded together. The first glass substrate has first and second opposed surfaces. A die pocket is formed in the first opposed surface, and a through slot extends from the die pocket to the second opposed surface. The second glass substrate is bonded to the second opposed surface of the first glass substrate whereby an outlet of a channel formed in the second glass substrate substantially aligns with the through slot. The channel of the second glass substrate has an inlet that is larger than the outlet.