摘要:
An electrostatic chuck for clamping a warped workpiece has a clamping surface comprising a dielectric layer. The dielectric layer has a field and one or more zones formed of differing dielectric materials. One or more electrodes are coupled to a power supply, and a controller controls a clamping voltage supplied to the one or more electrodes via the power supply. An electrostatic attraction force associated with each of the field and one or more zones of the dielectric layer of the electrostatic chuck is induced, wherein the electrostatic attraction force varies based on the dielectric material of each of the field and one or more zones. The electrostatic attraction force is greater in the one or more zones than in the field, therein attracting warped regions of the workpiece to the clamping surface and clamping the warped workpiece to the clamping surface across a surface of the warped workpiece.
摘要:
An electrostatic chuck for clamping a warped workpiece has a clamping surface comprising a dielectric layer. The dielectric layer has a field and one or more zones formed of differing dielectric materials. One or more electrodes are coupled to a power supply, and a controller controls a clamping voltage supplied to the one or more electrodes via the power supply. An electrostatic attraction force associated with each of the field and one or more zones of the dielectric layer of the electrostatic chuck is induced, wherein the electrostatic attraction force varies based on the dielectric material of each of the field and one or more zones. The electrostatic attraction force is greater in the one or more zones than in the field, therein attracting warped regions of the workpiece to the clamping surface and clamping the warped workpiece to the clamping surface across a surface of the warped workpiece.
摘要:
Embodiments of an ultraviolet (UV) curing system for treating a semiconductor substrate such as a wafer are disclosed. The curing system generally includes a processing chamber, a wafer support for holding a wafer in the chamber, a UV radiation source disposed above the chamber, and a UV transparent window interspersed between the radiation source and wafer support. In one embodiment, the wafer support is provided by a belt conveyor operable to transport wafers through the chamber during UV curing. In another embodiment, the UV radiation source is a movable lamp unit that travels across the top of the chamber for irradiating the wafer. In another embodiment, the UV transparent window includes a UV radiation modifier that reduces the intensity of UV radiation on portions of the wafer positioned below the modifier. Various embodiments enhance wafer curing uniformity by normalizing UV intensity levels on the wafer.
摘要:
The present disclosure relates to a guiding element for guiding gas flow within a chamber. The guiding element includes a structure, one or more inlets, an outlet, and a transportation region. The one or more inlets are formed on a first side of the structure. The inlets have inlet sizes selected according to a removal rate and to mitigate gas flow variations within the chamber. The outlet is on a second side of the structure, opposite the first side of the structure. The outlet has an outlet size selected according to the removal rate. The transportation region is within the structure and couples or connects the inlets to the outlet.
摘要:
The present disclosure relates to a guiding element for guiding gas flow within a chamber. The guiding element includes a structure, one or more inlets, an outlet, and a transportation region. The one or more inlets are formed on a first side of the structure. The inlets have inlet sizes selected according to a removal rate and to mitigate gas flow variations within the chamber. The outlet is on a second side of the structure, opposite the first side of the structure. The outlet has an outlet size selected according to the removal rate. The transportation region is within the structure and couples or connects the inlets to the outlet.
摘要:
The present disclosure provides for methods and systems for controlling profile uniformity of a chemical vapor deposition (CVD) film. A method includes depositing a first layer on a substrate by CVD with a first shower head, the first layer having a first profile, and depositing a second layer over the first layer by CVD with a second shower head, the second layer having a second profile. The combined first layer and second layer have a third profile, and the first profile, the second profile, and the third profile are different from one another.
摘要:
The present disclosure provides for methods and systems for controlling profile uniformity of a chemical vapor deposition (CVD) film. A method includes depositing a first layer on a substrate by CVD with a first shower head, the first layer having a first profile, and depositing a second layer over the first layer by CVD with a second shower head, the second layer having a second profile. The combined first layer and second layer have a third profile, and the first profile, the second profile, and the third profile are different from one another.
摘要:
An illumination device includes: a mounting unit; a lighting unit including a circuit board mounted on the mounting unit, and at least one light emitting component mounted on the circuit board; and a lamp cap mounted on the mounting unit for covering the lighting unit. The lamp cap includes a surrounding wall disposed around the lighting unit, a central top wall disposed spacedly in the surrounding wall, and a plurality of spaced apart connecting ribs interconnecting the surrounding wall and the central top wall such that a plurality of vent holes are formed among the surrounding wall, the central top wall and the connecting ribs.
摘要:
A background image updating method is adapted to a touch screen including a first and a second image modules. A first and a second images are captured by the first and the second image modules as a first and a second background images, respectively. (a) Whether an absolute value of a brightness difference between a third image captured by the first image module and the first background image is greater than a predetermine value is compared. (b) If the result of the step(a) is yes, whether an absolute value of a brightness difference between a fourth image captured by the second image module and the second background image is greater than another predetermine value is compared. (c) If the result of the step(b) is yes, a fifth and a sixth images are captured by the first and the second image modules as the first and the second background images, respectively.
摘要:
In some embodiments, the present disclosure relates to a plasma processing system that generates a magnetic field having a maximum strength that is independent of workpiece size. The plasma processing system has a plurality of side electromagnets that have a size which is independent of the workpiece size. The side electromagnets are located around a perimeter of a processing chamber configured to house a semiconductor workpiece. When a current is provided to the side electromagnets, separate magnetic fields emanate from separate positions around the workpiece. The separate magnetic fields contribute to the formation of an overall magnetic field that controls the distribution of plasma within the processing chamber. Because the size of the plurality of separate side magnets is independent of the workpiece size, the plurality of side magnets can generate a magnetic field having a maximum field strength that is independent of workpiece size.