Abstract:
A green phosphorescent iridium complex represented by Formula (I) is provided. In Formula (I), R1, R2 and R3 are, independently, hydrogen, halogen, substituted or non-substituted C1-6 alkyl, C1-6 alkoxy, cycloalkyl, substituted or non-substituted aryl, amino or heteroaryl, and L is a heterocyclic ring containing N—N or N—O ligand. The invention also provides a method for fabricating the green phosphorescent iridium complex and an organic light-emitting diode including the green phosphorescent iridium complex.
Abstract:
A green phosphorescent iridium complex represented by Formula (I) is provided. In Formula (I), R1, R2 and R3 are, independently, hydrogen, halogen, substituted or non-substituted C1-6 alkyl, C1-6 alkoxy, cycloalkyl, substituted or non-substituted aryl, amino or heteroaryl, and L is a heterocyclic ring containing N—N or N—O ligand. The invention also provides a method for fabricating the green phosphorescent iridium complex and an organic light-emitting diode including the green phosphorescent iridium complex.
Abstract:
This invention provides transition metal carbene complexes and the electroluminescent application thereof. Through employing different N^N heteroleptic ligand, as the following, the transition metal carbene complex can display wide-range color tuning ability from deep blue to red. The mentioned transition metal carbene complex can be applied in luminescent device, and the luminescent device can display wide-range color tuning ability with high luminescent efficiency while employing different N^N heteroleptic ligand in the transition metal carbene complex.
Abstract:
A 9,10-bisphenylphenanthrene derivative has a structure of formula (1): wherein P1 and P2 are substituted or non-substituted polycyclic aromatic hydrocarbons (PAH), and R is a member selected from the group consisting of H, halo, cyano, trifluoromethyl, amino, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl, C1-C20 heterocycloalkyl, C1-C20 heterocycloalkenyl, aryl and heteroaryl. The 9,10-bisphenylphenanthrene derivative of the present invention may function as a host emitter to be used in an organic light emitting device with advantages such as higher efficiency, lower operating voltage, higher brightness and higher thermal stability.
Abstract:
A method for synthesis of secondary alcohols is provided for pharmaceutical secondary alcohol by addition of organoboronic acids with aldehydes in presence of the cobalt ion and bidentate ligands as the catalyst. In addition, an enantioselective synthesis method for secondary alcohols is also herein provided in the present invention. The present invention has advantages in using less expensive cobalt ion and commercially available chiral ligands as the catalyst, wide scope of organoboronic acids and aldehydes compatible with this catalytic reaction and achieving excellent yields and/or enantiomeric excess.
Abstract:
The present invention discloses a bis-triphenylsilyl compound and its applications as a host material, electron transport material, or hole transport material in an organic electronic device. The general structure of the bis-triphenylsilyl compound is as follows: where G represents any atomic moiety or single bond of the functional group selected from the group consisting of the following: aryl group, cyclene group, and heterocyclic ring group; and R1˜R32 represent substituents on aryl groups.
Abstract:
A phosphorescent Ir complex having the following structures (I) or (II) is used as an emitter in an organic light emitting diode (OLED): wherein X is an arbitrary monoanionic bidentate ligand; Z is an arbitrary moiety constituting a nitrogen-containing heterocyclic group; R1 is a substituent on the nitrogen-containing heterocyclic group; m is 0 or a positive integer; R2 and R3 independently are H, halogen, C1-C6 alkyl, a halogen-substituted C1-C6 alkyl, C1-C6 alkoxy, phenyl C1-C6 alkyl, amino, aryl, heterocyclic aryl substituent.
Abstract:
Triphenylene derivatives having a structure of formula (1) are provided. Ar represents an aromatic compound, n is 1 to 3, and each of R and R1 to R13 is a member independently selected from the group consisting of hydrogen, halo, cyano, trifluoromethyl, amino, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl, C1-C20 heterocycloalkyl, C1-C20 heterocycloalkenyl, aryl and heteroaryl. The compound of the present invention may function as a host emitter or dopant in the emitter layer of OLED device. An OLED device is also herein provided.
Abstract:
Organic compounds and organic electroluminescence devices employing the same are provided. The organic compound has a chemical structure represented as follows: wherein: R1, R2, R3, R4, R5, R6, and R7 are each independently an H, C1-8 alkyl group, C1-8 alkoxy group, C1-8 halo-alkyl group, aryl group, heteroaryl group, cycloalkyl group, hetero-cycloalkyl group, or cycloaliphatic group; Z is independently and R8 and R9 are each independent an aryl group, heteroaryl group, cycloalkyl group, hetero-cycloalkyl, or cycloaliphatic group.
Abstract:
Disclosed is a triphenylene based aromatic compound, wherein a benzene center is substituted with a triphenylene group and another aromatic group such as triphenylenyl, pyrenyl, phenylvinyl, carbazolylphenyl, or arylanthryl in the meta position of the benzene center. The meta-substituted aromatic compound of the invention has better thermal stability (Tg) than the conventional para-substituted aromatic compound. The meta-substituted aromatic compound, served as a hole transporting layer or a host material applied in a light emitting layer in an OLED, is more preferable than the conventional para-substituted aromatic compound.