摘要:
A MEMS structure includes a substrate, a structural dielectric layer, and a diaphragm. A structural dielectric layer is disposed over the substrate. The diaphragm is held by the structural dielectric layer at a peripheral end. The diaphragm includes multiple trench/ridge rings at a peripheral region surrounding a central region of the diaphragm. A corrugated structure is located at the central region of the diaphragm, surrounded by the trench/indent rings.
摘要:
A MEMS structure includes a substrate, a structural dielectric layer, and a diaphragm. A structural dielectric layer is disposed over the substrate. The diaphragm is held by the structural dielectric layer at a peripheral end. The diaphragm includes multiple trench/ridge rings at a peripheral region surrounding a central region of the diaphragm. A corrugated structure is located at the central region of the diaphragm, surrounded by the trench/indent rings.
摘要:
A MEMS device includes a silicon substrate and a structural dielectric layer. The silicon substrate has a cavity. The structural dielectric layer is disposed on the silicon substrate. The structural dielectric layer has a space above the cavity of the silicon substrate and holds a plurality of structure elements within the space, including: a conductive backplate, over the silicon substrate, having a plurality of venting holes and a plurality of protrusion structures on top of the conductive backplate; and a diaphragm, located above the conductive backplate by a distance, wherein a chamber is formed between the diaphragm and the conductive backplate, and is connected to the cavity of the silicon substrate through the venting holes. A first side of the diaphragm is exposed by the chamber and faces to the protrusion structures of the conductive backplate and a second side of the diaphragm is exposed to an environment space.
摘要:
A MEMS device includes a silicon substrate and a structural dielectric layer. The silicon substrate has a cavity. The structural dielectric layer is disposed on the silicon substrate. The structural dielectric layer has a space above the cavity of the silicon substrate and holds a plurality of structure elements within the space, including: a conductive backplate, over the silicon substrate, having a plurality of venting holes and a plurality of protrusion structures on top of the conductive backplate; and a diaphragm, located above the conductive backplate by a distance, wherein a chamber is formed between the diaphragm and the conductive backplate, and is connected to the cavity of the silicon substrate through the venting holes. A first side of the diaphragm is exposed by the chamber and faces to the protrusion structures of the conductive backplate and a second side of the diaphragm is exposed to an environment space.
摘要:
A MEMS device includes a substrate. The substrate has a plurality of through holes in the substrate within a diaphragm region and optionally an indent space from the second surface at the diaphragm region. A first dielectric structural layer is then disposed over the substrate from the first surface, wherein the first dielectric structural layer has a plurality of openings corresponding to the through holes, wherein each of the through holes remains exposed by the first dielectric structural layer. A second dielectric structural layer with a chamber is disposed over the first dielectric structural layer, wherein the chamber exposes the openings of the first dielectric structural layer and the through holes of the substrate to connect to the indent space. A MEMS diaphragm is embedded in the second dielectric structural layer above the chamber, wherein an air gap is formed between the substrate and the MEMS diaphragm.
摘要:
Method for fabricating MEMS device has a first surface and a second surface and having a MEMS region and an IC region. A MEMS structure is formed over the first surface. A structural dielectric layer is formed over the first surface. The structural dielectric layer has a dielectric member and the spaces surrounding the MEMS structure is filled with the dielectric member. The substrate is patterned by etching process from the second surface of the substrate to expose a portion of the dielectric member filled in the space surrounding the MEMS structure. A wettable thin layer is formed to cover an exposed portion of the substrate at the second surface. An etching process is performed on the dielectric member filled in the spaces surrounding the MEMS structure. The MEMS structure is exposed and released by the etching process. The etching process comprises an isotropic etching process with a wet etchant.
摘要:
Method for fabricating MEMS device has a first surface and a second surface and having a MEMS region and an IC region. A MEMS structure is formed over the first surface. A structural dielectric layer is formed over the first surface. The structural dielectric layer has a dielectric member and the spaces surrounding the MEMS structure is filled with the dielectric member. The substrate is patterned by etching process from the second surface of the substrate to expose a portion of the dielectric member filled in the space surrounding the MEMS structure. A wettable thin layer is formed to cover an exposed portion of the substrate at the second surface. An etching process is performed on the dielectric member filled in the spaces surrounding the MEMS structure. The MEMS structure is exposed and released by the etching process. The etching process comprises an isotropic etching process with a wet etchant.
摘要:
A method for fabricating non-volatile memory on a substrate includes forming a plurality of doped lines in the substrate along a first direction, wherein the doped lines serve as a plurality of bit lines, and portions of each of the doped lines serves as source/drain regions for a plurality of memory cells. A charge storage stacked layer is formed over the substrate, wherein the charge storage stacked layer includes a charge trapping layer. A conductive layer is formed over the charge storage layer. The conductive layer and the charge storage stacked layer are patterned to form a plurality of word lines along a second direction, intersecting with the first directing. The remaining portion of the charge trapping layer is just under the word lines, not covering the isolation region between the word lines.
摘要:
A nonvolatile memory device, including composite gate structures formed on a substrate in series along a bit line (BL) direction. Each of the composite gate structures has a first storage gate, a second storage gate, and a selection gate between the two storage gates. Each of the composite gate structures is respectively coupled to two world line (WL) connection terminals at the two storage gates and a selection terminal at the selection gate. Each of the storage gates corresponds to a memory bit cell. Multiple doped regions are in the substrate between the composite gate structures. A first selection doped region are formed in the substrate and coupled between a BL connection terminal and a first edge one of the composite gate structure. A second selection doped region is formed in the substrate and coupled between a second edge one of the composite gate structures and a voltage terminal.
摘要:
A MEMS device includes a substrate. The substrate has a plurality of through holes in the substrate within a diaphragm region and optionally an indent space from the second surface at the diaphragm region. A first dielectric structural layer is then disposed over the substrate from the first surface, wherein the first dielectric structural layer has a plurality of openings corresponding to the through holes, wherein each of the through holes remains exposed by the first dielectric structural layer. A second dielectric structural layer with a chamber is disposed over the first dielectric structural layer, wherein the chamber exposes the openings of the first dielectric structural layer and the through holes of the substrate to connect to the indent space. A MEMS diaphragm is embedded in the second dielectric structural layer above the chamber, wherein an air gap is formed between the substrate and the MEMS diaphragm.