摘要:
The present invention provides a method for producing a separator for nonaqueous electrolyte electricity storage devices. The method allows: avoidance of use of a solvent that places a large load on the environment; relatively easy control of parameters such as the porosity and the pore diameter; and a high electrochemical stability of a resultant separator for nonaqueous electrolyte electricity storage devices. The present invention relates to a method for producing a separator for nonaqueous electrolyte electricity storage devices that has a thickness ranging from 5 to 50 μm. The method of the present invention includes the steps of: preparing an epoxy resin composition containing an epoxy resin whose molecular structure has no aromatic ring, a curing agent, and a porogen; forming a cured product of the epoxy resin composition into a sheet shape or curing a sheet-shaped formed body of the epoxy resin composition, so as to obtain an epoxy resin sheet; and removing the porogen from the epoxy resin sheet by means of a halogen-free solvent.
摘要:
Provided is a separator for nonaqueous electrolyte electricity storage devices that includes an improved porous epoxy resin membrane. In the separator for nonaqueous electrolyte electricity storage devices, a ratio I/Io between a peak intensity Io of an absorption peak present at 1240 cm−1 in an infrared absorption spectrum of the porous epoxy resin membrane and a peak intensity I of an absorption peak present at 1240 cm−1 in an infrared absorption spectrum of the porous epoxy resin membrane having been subjected to an acetic anhydride treatment is 1.0 or more and 2.4 or less. The amount of active hydroxyl groups present in the porous epoxy resin membrane can be evaluated by the value of the ratio I/Io.
摘要:
Provided is a separator for nonaqueous electrolyte electricity storage devices that includes an improved porous epoxy resin membrane. At least one compound selected from a carboxylic acid, a carboxylic acid salt, a carboxylic acid anhydride, and a carboxylic acid halide, is brought into contact with a porous epoxy resin membrane, and thus hydroxyl groups contained in the porous membrane are reacted with the compound to produce carboxylic acid ester bonds. As a result of this treatment, the amount of active hydroxyl groups present in the porous epoxy resin membrane is reduced, and the porous epoxy resin membrane becomes suitable as a separator for nonaqueous electrolyte electricity storage devices. An epoxy resin sheet yet to be made porous may be subjected to reaction with the compound.
摘要:
The present invention provides a method for producing a separator for nonaqueous electrolyte electricity storage devices. The method allows: avoidance of use of a solvent that places a large load on the environment; relatively easy control of parameters such as the porosity and the pore diameter; and a relatively high strength of a resultant separator for nonaqueous electrolyte electricity storage devices. The present invention relates to a method for producing a separator for nonaqueous electrolyte electricity storage devices that has a thickness ranging from 5 to 50 μm. The method includes the steps of preparing an epoxy resin composition containing a glycidylamine-type epoxy resin, a curing agent, and a porogen; forming a cured product of the epoxy resin composition into a sheet shape or curing a sheet-shaped formed body of the epoxy resin composition, so as to obtain an epoxy resin sheet; and removing the porogen from the epoxy resin sheet by means of a halogen-free solvent.
摘要:
The invention provides a battery separator comprising a porous resin film and a crosslinked polymer supported thereon and having iminodiacetic acid groups in side chains of the polymer chains. The iminodiacetic acid group is preferably represented by the formula wherein M1 and M2 are each independently a hydrogen atom, a lithium atom, a potassium atom, a sodium atom, or triethylamine. It is preferred that the layer of the crosslinked polymer is substantially nonporous or solid, and ion conductive, and that the crosslinked polymer has in the molecule oxetanyl groups which are capable of cation polymerization.
摘要:
The present invention relates to a battery separator including: a porous substrate; and a layer of a crosslinked polymer supported on at least one surface of the porous substrate, in which the crosslinked polymer is obtained by reacting (a) a reactive polymer having, in the molecule thereof, a first reactive group containing active hydrogen and a second reactive group having cationic polymerizability with (b) a polycarbonate urethane prepolymer terminated by an isocyanate group.
摘要:
A battery separator (13) of the present invention includes a porous film (12) serving as a substrate and a crosslinked polymer layer (11) supported on the porous film (12). The crosslinked polymer layer (11) contains a crosslinked polymer and inorganic particles, and is non-porous. The crosslinked polymer is obtained by reacting a reactive polymer having a functional group in its molecule with a polyfunctional compound reactive with the functional group so as to crosslink at least a part of the reactive polymer. A lithium ion secondary battery of the present invention includes a positive electrode (14), a negative electrode (15), the battery separator (13) of the present invention disposed between the positive electrode (14) and the negative electrode (15), and a non-aqueous electrolyte solution. The battery separator (13) is disposed so that the porous film (12) faces the negative electrode (15) and the crosslinked polymer layer (11) faces the positive electrode (14).
摘要:
The present invention relates to a battery separator including: a porous substrate; and a layer of a crosslinked polymer supported on at least one surface of the porous substrate, in which the crosslinked polymer is obtained by reacting (a) a reactive polymer having, in the molecule thereof, a first reactive group containing active hydrogen and a second reactive group having cationic polymerizability with (b) a polycarbonate urethane prepolymer terminated by an isocyanate group.
摘要:
A battery separator (13) of the present invention includes a porous film (12) serving as a substrate and a crosslinked polymer layer (11) supported on the porous film (12). The crosslinked polymer layer (11) contains a crosslinked polymer and inorganic particles, and is non-porous. The crosslinked polymer is obtained by reacting a reactive polymer having a functional group in its molecule with a polyfunctional compound reactive with the functional group so as to crosslink at least a part of the reactive polymer. A lithium ion secondary battery of the present invention includes a positive electrode (14), a negative electrode (15), the battery separator (13) of the present invention disposed between the positive electrode (14) and the negative electrode (15), and a non-aqueous electrolyte solution. The battery separator (13) is disposed so that the porous film (12) faces the negative electrode (15) and the crosslinked polymer layer (11) faces the positive electrode (14).
摘要:
The present invention relates to a battery separator including: a porous substrate; and a layer of a crosslinked polymer supported on at least one surface of the porous substrate, in which the crosslinked polymer is obtained by reacting (a) a reactive polymer having, in the molecule thereof, a reactive group containing active hydrogen with (b) a polycarbonate urethane prepolymer terminated by an isocyanate group.