摘要:
The invention discloses a photovoltaic cell with a high photocurrent. The photovoltaic cell comprises a first electrode, a second electrode, a photoactive layer between the first and second electrodes, and a polar organic layer between the photoactive layer and at least one of the first and second electrodes.
摘要:
The invention discloses soluble polythiophene derivatives containing highly coplanar repeating units. The coplanar characteristic of side chain conjugated thiophene units improves the degree of the intramolecular conjugation and intermolecular π-π interaction. The polythiophene derivative exhibits good carrier mobility and is suitable for use in photo-electronic device such as organic thin film transistors (OTFT), organic light-emitting diodes (OLEDs), and organic solar cells (OSCs).
摘要:
An active layer utilized in a solar cell. The active layer includes a polymer film having a plurality of hollow column array structures formed therein and a semiconductor material filled in the hollow column structures. The invention also provides a method of fabricating the active layer utilized in a solar cell.
摘要:
A method for making a series of nanoscale microstructures, including helical microstructures and cylindrical microstructures. This method includes the steps of: (1) forming a chiral block copolymer containing a plurality of chiral first polymer blocks and a second polymer blocks wherein the chiral first polymer blocks have a volume fraction ranging from 20 to 49%; (2) causing a phase separation in the chiral block copolymer. In a preferred embodiment, the chiral block copolymer is poly(styrene)-poly(L-lactide) (PS-PLLA) chiral block copolymer, and the copolymerization process is a living copolymerization process which includes the following steps: (a) mixing styrene with BPO and 4-OH-TEMPO to form 4-hydroxy-TEMPO-terminated polystyrene; and (2) mixing the 4-hydroxy-TEMPO-terminated polystyrene with [(η3-EDBP)Li2]2[(η3-nBu)Li(0.5Et2O)]2 and L-lactide in an organic solvent preferably CH2Cl2 to form the poly(styrene)-poly(L-lactide) chiral block copolymer. Transmission electron microscopy (TEM) and small X-ray scattering (SAXS) studies show that when the volume fraction of poly(L-lactide) is about 35-37%, nanoscale helices with a pitch of 43.8 nanometers and a diameter of 34.4 nanometers were observed.
摘要:
A method for making a series of nanoscale microstructures, including helical microstructures and cylindrical microstrustures. This method includes the steps of: (1) forming a chiral block copolymer containing a plurality of chiral first polymer blocks and a second polymer blocks wherein the chiral first polymer blocks have a volume fraction ranging from 20 to 49%; (2) causing a phase separation in the chiral block copolymer. In a preferred embodiment, the chiral block copolymer is poly(styrene)-poly(L-lactide) (PS-PLLA) chiral block copolymer, and the copolymerization process is a living copolymerization process which includes the following steps: (a) mixing styrene with BPO and 4-OH-TEMPO to form 4-hydroxy-TEMPO-terminated polystyrene; and (2) mixing the 4-hydroxy-TEMPO-terminated polystyrene with [η3-EDBP)Li2]2[(η3-nBu)Li(0.5Et2O)]2 and L-lactide in an organic solvent preferably CH2Cl2 to form the poly(styrene)-poly(L-lactide) chiral block copolymer. Transmission electron microscopy (TEM) and small X-ray scattering (SAXS) studies show that when the volume fraction of poly(L-lactide) is about 35–37%, nanoscale helices with a pitch of 43.8 nanometers and a diameter of 34.4 nanometers were observed.
摘要翻译:一种制备一系列纳米级微观结构的方法,包括螺旋微结构和圆柱形微结构。 该方法包括以下步骤:(1)形成含有多个手性第一聚合物嵌段的手性嵌段共聚物和第二聚合物嵌段,其中手性第一聚合物嵌段具有20至49%的体积分数; (2)引起手性嵌段共聚物中的相分离。 在优选的实施方案中,手性嵌段共聚物是聚(苯乙烯) - 聚(L-丙交酯)(PS-PLLA)手性嵌段共聚物,共聚方法是一种活性共聚方法,其包括以下步骤:(a) 用BPO和4-OH-TEMPO形成4-羟基-TEMPO封端的聚苯乙烯; 和(2)将4-羟基-TEMPO封端的聚苯乙烯与[η3 -EDBP] Li 2 N 2 [2] 优选的有机溶剂中的L 3→N 2→Bu)Li(0.5E 2 O 2)2 N 2和L-丙交酯 CH 2 2 Cl 2以形成聚(苯乙烯) - 聚(L-丙交酯)手性嵌段共聚物。 透射电子显微镜(TEM)和小X射线散射(SAXS)研究表明,当聚(L-丙交酯)的体积分数为约35-37%时,具有43.8纳米的间距和34.4纳米的直径的纳米级螺旋 被观察到。
摘要:
The present invention discloses a soluble polythiophene derivative containing highly coplanar repeating units. The coplanar characteristic of the TPT (thiophene-phenylene-thiophene) units improves the degree of intramolecular conjugation and intermolecular π-π interaction. The polythiophene derivative exhibits good carrier mobility and is suitable for use in optoelectronic devices such as organic thin film transistors (OTFTs), organic light-emitting diodes (OLEDs), and organic solar cells (OSCs).
摘要:
A nanopatterned template for use in manufacturing nanoscale objects. The nanopatterned template contains a nanoporous thin film with a periodically ordered porous geomorphology which is made from a process comprising the steps of: (a) using a block copolymerization process to prepare a block copolymer comprising first and second polymer blocks, the first and second polymer blocks being incompatible with each other; (b) forming a thin film under conditions such that the first polymer blocks form into a periodically ordered topology; and (c) selectively degrading the first polymer blocks to cause the thin film to become a nanoporous material with a periodically ordered porous geomorphology. In a preferred embodiment, the block copolymer is poly(styrene)-poly(L-lactide) (PS-PLLA) chiral block copolymer, the first polymer is poly(L-lactide), and the second polymer is polystyrene. Experimental results show that the first polymer blocks can be formed into a hexagonal cylindrical geomorphology with its axis perpendicular to a surface of the thin film. After hydrolysis to selectively degrade the first polymer blocks, a thin film having a series of repeated nanoscale hexagonal-cylindrical channels is obtained.
摘要:
A viscosity controllable highly conductive ink composition. The highly conductive ink composition comprises an organic solvent, nanoscale metal particles or metallo-organic decomposition compounds, and a thermally decomposable organic polymer. Specifically, since the thermally decomposable polymer can increase the viscosity of the highly conductive ink composition and be removed by subsequent thermal treatment, so as to decrease the impact on conductivity by organic polymer. Therefore, a viscosity-controllable conductive ink composition is obtained.
摘要:
The present invention discloses a soluble polythiophene derivative containing highly coplanar repeating units. The coplanar characteristic of the TPT (thiophene-phenylene -thiophene) units improves the degree of intramolecular conjugation and intermolecular π-π interaction. The polythiophene derivative exhibits good carrier mobility and is suitable for use in optoelectronic devices such as organic thin film transistors (OTFTs), organic light-emitting diodes (OLEDs), and organic solar cells (OSCs).
摘要:
A viscosity controllable highly conductive ink composition. The highly conductive ink composition comprises an organic solvent, nanoscale metal particles or metallo-organic decomposition compounds, and a thermally decomposable organic polymer. Specifically, since the thermally decomposable polymer can increase the viscosity of the highly conductive ink composition and be removed by subsequent thermal treatment, so as to decrease the impact on conductivity by organic polymer. Therefore, a viscosity-controllable conductive ink composition is obtained.