摘要:
Objects and their placement within a particular scene may be characterized using structured light with no or minimal manual intervention or calibration to the scene. The structured light pattern may be rendered with visible light, yet imperceptible to users, by generating a set of opposing excursions in one or more image properties for durations which are shorter than the integration time of the human eye. A set of assumptions and ongoing testing of those assumptions against physical objects identified within the environment allows characterization of the scene and the objects therein.
摘要:
An augmented reality system is configured to identify and track user gestures, sounds, and interaction with physical objects to designate active zones. These active zones may be allocated additional processing and functional resources. Gestures may include particular hand or body motions, orientation of a user's head, and so forth. Sounds may include clapping, clicks, whistles, taps, footfalls, humming, singing, speech, and so forth. Active areas as well as inactive areas of lesser or no interest may be designated as well.
摘要:
Augmented reality environments allow users in their physical environment to interact with virtual objects and information. Augmented reality applications are developed and configured to utilize local as well as cloud resources. Application management allows control over distribution of applications to select groups or all users. An application programming interface allows simplified control and distribution of tasks between local and cloud resources during development and post-development operation. This integration between local and cloud resources along with the control afforded by application management allows rapid development, testing, deployment, and updating of augmented reality applications.
摘要:
A virtual overlay alters the appearance of a quasi-virtual object within an augmented reality environment. This quasi-virtual object may display information to the user, accept input from the user via motions or physical interactions between the user and the object, or both. Quasi-virtual objects allow a virtual object to have a physical manifestation within the augmented reality environment.
摘要:
A display system having a modulated light source is configured to include one or more non-visible wavelengths as part of the display sequence. In one implementation a color wheel, configured to modulate the wavelengths emitted by a projector, includes an infrared (IR) segment, allowing for projection of an IR image. The wavelength modulated non-visible light may be spatially modulated to generate a structured light pattern, for signaling, to synchronization with other devices, and so forth.
摘要:
An augmented reality environment allows interaction between virtual and real objects. By monitoring user actions with the augmented reality environment various functions are provided to users. Users may buy or sell items with a gesture, check inventory of objects in the augmented reality environment, view advertisements, and so forth.
摘要:
An architecture includes a system to create an augmented reality environment in which images are projected onto a scene and user movement within the scene is captured. In addition to primary visual stimuli, the architecture further includes introduction of a secondary form of sensory feedback into the environment to enhance user experience. The secondary sensory feedback may be tactile feedback and/or olfactory feedback. The secondary sensory feedback is provided to the user in coordination with the visual based activity occurring within the scene.
摘要:
An architecture includes a system to create an augmented reality environment in which images are projected onto a scene and user movement within the scene is captured. The augmented reality environment is hosted within a surrounding area in which various ambient conditions, external to the augmented reality environment, persist. The architecture monitors the external conditions and controls secondary devices that selectively modify the conditions as desired in cooperation with operation of the augmented reality environment to effectively enhance user experience. Alternatively or additionally, the architecture may inform the user of what changes to make, and the user manually makes the adjustments.
摘要:
Devices and techniques are described for generating three-dimensional (3D) models of objects. Depth data acquired from a depth camera system is used with data about surface normals to generate a 3D model of the object. The depth camera system may use cameras or projectors with different baseline distances to generate depth data. The use of different baseline distances may improve accuracy of the depth data. The data about surface normals may be calculated from images acquired when the object is illuminated from different angles. By using the depth data and relative depth changes from the surface normal data, high resolution spatial data may be generated at high frame rates. Data from multiple baseline distances may also be combined to improve performance.
摘要:
Structured light patterns are projected onto an object and images of the structured light interacting with the surface of the object are acquired, as well as grayscale information. Edges within the structured light patterns are detected and depth sample points on the edges are used to determine distance to those sample points. The grayscale information is used to construct surface normals. From these normals relative surface contours such as curves or slopes may be determined. A model of a surface of the object is generated using the distances and the contours.