摘要:
A hydrocarbon feedstock is catalytically reformed in a sequence comprising a continuous-reforming zone associated with continuous catalyst regeneration, a zeolitic-reforming zone containing a catalyst comprising a platinum-group metal and a nonacidic L-zeolite and an aromatics-isomerization zone containing a catalyst comprising a platinum-group metal, a metal attenuator and a refractory inorganic oxide. The process combination features high selectivity in producing a high-purity BTX product from naphtha.
摘要:
A hydrocarbon feedstock is catalytically reformed in a sequence comprising a reforming zone containing a catalyst comprising a platinum-group metal and a nonacidic L-zeolite and an aromatics-isomerization zone containing a catalyst comprising a platinum-group metal, a metal attenuator and a refractory inorganic oxide. The process combination features high selectivity in producing a high-purity BTX product from naphtha.
摘要:
A hydrocarbon feedstock is catalytically reformed in a sequence comprising a zeolitic-reforming zone containing a catalyst comprising a platinum-group metal and a nonacidic L-zeolite and an aromatics-isomerization zone containing a catalyst comprising a medium-pore molecular sieve, a platinum-group metal and a refractory inorganic oxide. Optionally, the zeolitic-reforming zone is preceded by a continuous-reforming zone associated with continuous catalyst regeneration, The process combination features high selectivity in producing a high-purity BTX product from naphtha.
摘要:
The feedstock to an aromatization process is processed by a selective adsorption step to remove hydrocarbon species, particularly indan, which have a severe adverse effect on aromatization catalyst stability. The feedstock preferably is a paraffinic raffinate from aromatics extraction. The intermediate from the adsorption step is particularly suitable for the selective conversion of paraffins to aromatics using a high-activity dehydrocyclization catalyst with high aromatics yields and long catalyst life.
摘要:
An advantageous integration of benzene saturation for a light paraffin containing feedstock in a light paraffin isomerization and adsorption system maintains isomerization conversion while reducing benzene levels. The process improves the efficiency of the isomerization and saturation zones by saturating benzene from a light paraffin containing stream and adsorbing normal hydrocarbons from the saturation zone effluent stream together with normal hydrocarbons from an isomerization zone effluent. The isomerization zone effluent comprises converted hydrocarbons from a light paraffin containing feedstream having a relatively low benzene concentration. Saturating the high benzene feed in a first step of saturation and passing the low benzene containing feedstream through the isomerization zone independent of the benzene saturation removes normal hydrocarbons from the isomerization step to improve equilibrium and provides a gaseous phase for desorption and a heavier hydrocarbon phase for adsorption to improve product recovery and normal paraffin recovery.
摘要:
An improved catalyst particle is disclosed for the conversion of hydrocarbons which comprises a refractory inorganic-oxide support, a Friedel-Crafts metal halide, and a surface-layer platinum-group metal component, wherein the concentration of platinum-group metal component on the surface layer of each catalyst particle is at least 1.5 times the concentration in the central core of the catalyst particle. An isomerization process also is disclosed which is particularly effective for the conversion of C.sub.4 -C.sub.7 alkanes.
摘要:
A sulfur-sensitive catalyst which has been deactivated by accumulating sulfur on the catalyst is desulfurized by contact with ammonia at high temperature. The technique is particularly effective for reforming catalysts containing a large-pore zeolite which are selective for dehydrocyclization of paraffins. The desulfurization may be combined with regeneration for coke removal from the catalyst.
摘要:
The invention relates to the production of high octane fuels including a process for separating the high octane components for the gasoline pool from lower octane components, which are recycled to an isomerization reaction by adsorptively separating dimethyl paraffins from an isomerate with an aluminophosphate zeolite and SSZ-24, an all-silica zeolite adsorbent isostructural with AIPO.sub.4 -5, and a C.sub.6-10 normal paraffin desorbent. The lower octane components of the isomerate, normal paraffins and mono-branched paraffins, are recycled to the isomerization reaction zone for further conversion to multi-branched paraffins. The useful aluminophosphates are SAPO-5, AIPO.sub.4 -5 MgAPO-5 and MAPSO-5.
摘要:
A hydrotreating process uses a separation section that reduces the loss of C.sub.4 and higher hydrocarbons through the use of a low hydrogen to hydrocarbon ratio in the reactor and the adsorptive removal of a majority of hydrogen sulfide from a liquid phase hydrotreater effluent. Sulfurous hydrocarbon feed is admixed with hydrogen to maintain a hydrogen to hydrocarbon ratio of less than 50 SCFB. The hydrogen and hydrocarbons are passed through a hydrotreater reactor to convert sulfur compounds to H.sub.2 S. The hydrotreater effluent is cooled and after flashing of any excess hydrogen or light ends the cooled effluent is contacted with an adsorbent material for the removal of H.sub.2 S. A hydrotreated hydrocarbon product is withdrawn from the adsorption section. The low hydrogen to hydrocarbon ratio permits the process to be used without the recycle of hydrogen thereby eliminating the need for separators and compressors that were formly used to recycle hydrogen to the hydrotreater. The elimination of the recycle and the low hydrogen to hydrocarbon ratio simplifies the flowscheme which can use a simple separator to flash light ends, hydrogen and some H.sub.2 S from the hydrotreater effluent. This process thus eliminates the need for a stripping section that was formerly needed to remove light ends and hydrogen sulfide from the hydrotreated product. The adsorptive removal of the H.sub.2 S and the limited venting of hydrogen allows essentially all of the hydrotreated product to be preserved. In most flowschemes H.sub.2 S removal can be carried out in the adsorbers that are usually present for drying of the hydrotreated feed.
摘要:
A combination isomerization and liquid phase adsorptive separation process is given increased efficiency and cost effectiveness while also improving the product quality by eliminating the columns for the separation of desorbent material from extract and raffinate streams. In this arrangement a C.sub.5 + naphtha stream is split into a heavy hydrocarbon stream comprising normal hexane and higher boiling hydrocarbons and an isomerization zone feedstream comprising isohexane and lower boiling hydrocarbons. The heavy hydrocarbon stream goes directly to a deisohexanizer column. The isomerization zone feedstream is combined with an excess desorbent stream and the extract stream from an adsorptive separation section to form a combined feed. Hydrocarbons in the combined feed are isomerized and after stabilization pass directly into the adsorption section. In the adsorption section, normal pentanes are selectively adsorbed on an adsorbent material, and a raffinate stream comprising desorbent and isoparaffins is passed to the deisohexanizer column and supplies the desorbent for the adsorption section. Any desorbent in excess of that required for the adsorption section is combined with the isomerization zone feed. The extract stream that is combined with the isomerization zone feed is recovered from adsorption section. A bottoms stream comprising C.sub.7 and higher boiling hydrocarbons is withdrawn from the bottom of the deisohexanizer column. A high octane isomerate is taken overhead from the deisohexanizer as a product stream.