摘要:
A system and method, wherein the dielectric absorption of a capacitor is cancelled by a compensating circuit. One embodiment uses a compensation circuit comprising a compensating capacitor with substantially identical characteristics as the capacitor to be compensated in an integrator circuit. The effects of the dielectric absorption of the capacitor in the integrator circuit are reduced or eliminated because the dielectric absorption of the compensating capacitor cancels the dielectric absorption of the capacitor in the integrator circuit. Another embodiment uses compensation circuitry to reduce or eliminate the effects of dielectric absorption in any particular capacitor. The compensation capacitor in the compensation circuitry has a higher rate of dielectric absorption and a lower capacitance value than the capacitor whose dielectric absorption effects are to be reduced or eliminated. In another embodiment, the effects of the dielectric absorption of a capacitor are reduced or eliminated by choosing a compensation capacitor in the compensation circuitry with the same dielectric absorption as the capacitor to be compensated. The dielectric absorption of the compensation capacitor is scaled by the resistors in the compensation circuitry which determine the gain of the amplifier in the compensation circuitry.
摘要:
A successive approximation register (SAR) ADC includes an SAR comparator circuit including first and second inputs, a control input, and first and second outputs. The SAR comparator circuit further includes a plurality of capacitors coupled to the first and second inputs and includes a plurality of switches configured to couple the plurality of capacitors to one of a first voltage and a second voltage. The SAR ADC further includes a calibration circuit coupled to the first and second outputs and to the control input of the SAR comparator. The calibration circuit is configured to control the plurality of switches to selectively couple the plurality of capacitors to one of the first and second voltages to provide a calibration signal to the SAR comparator circuit. The calibration circuit is configured to calibrate the SAR comparator based on corresponding output signals at the first and second outputs.
摘要翻译:逐次逼近寄存器(SAR)ADC包括包括第一和第二输入,控制输入以及第一和第二输出的SAR比较器电路。 SAR比较器电路还包括耦合到第一和第二输入的多个电容器,并且包括被配置为将多个电容器耦合到第一电压和第二电压之一的多个开关。 SAR ADC还包括耦合到第一和第二输出和SAR比较器的控制输入的校准电路。 校准电路被配置为控制多个开关以选择性地将多个电容器耦合到第一和第二电压之一,以向SAR比较器电路提供校准信号。 校准电路被配置为基于在第一和第二输出处的相应输出信号校准SAR比较器。
摘要:
A successive approximation register (SAR) ADC includes an SAR comparator circuit including first and second inputs, a control input, and first and second outputs. The SAR comparator circuit further includes a plurality of capacitors coupled to the first and second inputs and includes a plurality of switches configured to couple the plurality of capacitors to one of a first voltage and a second voltage. The SAR ADC further includes a calibration circuit coupled to the first and second outputs and to the control input of the SAR comparator. The calibration circuit is configured to control the plurality of switches to selectively couple the plurality of capacitors to one of the first and second voltages to provide a calibration signal to the SAR comparator circuit. The calibration circuit is configured to calibrate the SAR comparator based on corresponding output signals at the first and second outputs.
摘要翻译:逐次逼近寄存器(SAR)ADC包括包括第一和第二输入,控制输入以及第一和第二输出的SAR比较器电路。 SAR比较器电路还包括耦合到第一和第二输入的多个电容器,并且包括被配置为将多个电容器耦合到第一电压和第二电压中的一个的多个开关。 SAR ADC还包括耦合到第一和第二输出和SAR比较器的控制输入的校准电路。 校准电路被配置为控制多个开关以选择性地将多个电容器耦合到第一和第二电压之一,以向SAR比较器电路提供校准信号。 校准电路被配置为基于在第一和第二输出处的相应输出信号校准SAR比较器。
摘要:
A PGIA for use in measurement devices (e.g., data acquisition device) including a composite amplifier for level shifting and improved signal-to-noise ratio. The composite amplifier may level shift from a constant common mode voltage to a lower common mode voltage with a large voltage swing. The large output signal swing of the PGIA may allow excellent signal-to-noise ratio. Additionally, input op-amps of the PGIA may be bootstrapped so that their supply rails move according to an input signal of the PGIA. The PGIA may also include protection circuitry to protect components from damage, e.g., due to over-current conditions, and to keep all op-amps in proper closed loop operation. Furthermore, the PGIA may include DA compensation circuitry to cancel some dielectric absorptions effects and improve a step response of the PGIA and CMRR enhancement circuitry to increase symmetry at inputs of the PGIA and improve a CMRR associated with the PGIA.
摘要:
A calibration unit and technique for calibrating A/D systems (e.g., data acquisition devices) using a pulse-width modulation (PWM) circuit to reduce nonlinearity. The calibration unit may be coupled to an analog-to-digital module (ADM) of the A/D system. The PWM circuit may generate a calibration signal with intentional ripple, which may exercise a region of a transfer curve of the ADM to reduce local nonlinearities in measurements associated with the calibration of the system. Pulse trains of varying frequency and duty cycle may be generated to sweep the PWM circuit through an ADM range and to calculate an ADM linearity correction function, which may be used to perform gain and offset correction with respect to a best-fit line through an ADM transfer curve to reduce large signal nonlinearities. The PWM circuit may include a resistor divider circuit including a plurality of taps to improve the ability to calibrate small input ranges.
摘要:
A PGIA for use in measurement devices (e.g., data acquisition device) having improved dielectric absorption (DA) compensation and common mode rejection ratio (CMRR). When a step function is applied to an input of the PGIA, a first and a second DA compensation circuit may generate DA compensation signals derived from the step function. The DA compensation signals may combine with an original response of the PGIA to cancel some of the dielectric absorptions effects and improve the overall step response of the PGIA. An input stage of the PGIA may include a CMRR enhancement circuit to increase symmetry at the inputs of the PGIA. The CMRR enhancement circuit may delay an input signal received at a negative input terminal a particular amount such that it is in phase with an input signal received at a positive input terminal of the PGIA, to improve the CMRR.
摘要:
In an embodiment, the present invention includes a latch circuit having a first input to receive a data signal and a second input to receive a clock signal. This latch circuit may have a first pair of transistors including a first transistor gated by the data signal and a second transistor gated by an inverted data signal and a second pair of transistors including third and fourth transistors gated by the clock signal. The first transistor may be coupled to the third transistor at a first inter-latch node and the second transistor coupled to the fourth transistor at a second inter-latch node. A reset circuit may be coupled to the latch circuit to maintain the first and second inter-latch nodes at a predetermined voltage level when the clock signal is inactive.
摘要:
In an embodiment, the present invention includes a latch circuit having a first input to receive a data signal and a second input to receive a clock signal. This latch circuit may have a first pair of transistors including a first transistor gated by the data signal and a second transistor gated by an inverted data signal and a second pair of transistors including third and fourth transistors gated by the clock signal. The first transistor may be coupled to the third transistor at a first inter-latch node and the second transistor coupled to the fourth transistor at a second inter-latch node. A reset circuit may be coupled to the latch circuit to maintain the first and second inter-latch nodes at a predetermined voltage level when the clock signal is inactive.