Abstract:
A device for conveying a spring string (31) has a first spring conveyor (3) and a second spring conveyor (4). By means of a sensor device, in operation, lengths of a plurality of segments of the spring string differing from one another are detected, while the spring string (31) is guided past a sensor (5) of the sensor device arranged in the conveying direction upstream of the second spring conveyor (4). A control device (9) is provided which sets, in an operating state of the device (1) in which both the first spring conveyor (3) and the second spring conveyor (4) convey the spring string (31), time-sequentially a plurality of relative conveying speeds between a conveying speed of the second spring conveyor (4) and a conveying speed of the first spring conveyor (3), depending on the detected lengths.
Abstract:
Disclosed are methods, systems and products, including a method that includes generating a system landscape overview including a context selection menu and an information window, the system landscape overview of a system landscape includes a plurality of systems identified by a unique identifier, the context selection menu enables modifying an import to at least one of the plurality of systems, and the information window provides metadata for the at least one of the plurality of systems; receiving, from the context sensitive menu, modification information representative of a schedule for an import to the at least one of the plurality of systems; determining, by a calculation engine, a workflow to install the at least one of the plurality of systems system; and providing the received modification information to a job scheduler to enable scheduling of the import to the at least one of the plurality of systems.
Abstract:
Disclosed are methods, systems and products, including a method that includes generating a system landscape overview of a system landscape including a plurality of systems identified by a unique identifier; placing a system in a location using a context sensitive menu including information to enable placement within the system landscape overview; determining a delta path including one or more instructions to install the placed system in the system landscape; and providing the delta path to enable implementation of the placed system within the system landscape. Related systems, methods, and articles of manufacture are also disclosed.
Abstract:
A gate valve for a vacuum chamber comprises two carriers (5a) each connected to a frame structure providing an essentially plane front by two parallel links (6) and to an actuating rod (12a) by parallel levers (14). Upward motion of the actuating rods (12a) by a piston (17) causes, via the levers (14), upward motion of the carriers (5a) which is transformed into a circular motion by the links (6) where the carriers (5a) at the same time approach the front while remaining parallel to it, moving sealing plates (9) which are fixed to the carriers (5a) to an active position where they press against the front and seal openings (3) therein. Retraction of the piston (17) effects an inverse motion, whereby the sealing plates (9) are completely removed from the openings (3) and the latter made easily accessible.
Abstract:
A method and a system for the propagation of a message in a radio-operated communication network having a base unit and a plurality of members, wherein the base unit and the members each includes a transmitter and a receiver, the receiver being activated at cyclical switch-on times for a certain respective receiving period. A message to be sent from a member to the base unit is transmitted by the member to at least one adjacent member as a function of at least one rule, and the message is transmitted by the at least one adjacent member, according to the at least one rule, to at least one member adjacent thereto, in the direction of the base unit. The process is repeated such that the message is transmitted from at least one adjacent member receiving the message according to the at least one rule to at least one member adjacent thereto, in the direction of the base unit. The message is transmitted from the at least one member that is adjacent to the base unit to at least the base unit.
Abstract:
A method of measuring selected values of a specimen having at least one edge is performed with an apparatus which positions the specimen in the path of a light beam such that the specimen at least partially interrupts the light beam and the edge borders a shadow cast by the specimen. Further, the apparatus rotates the specimen about a rotary axis through at least one predetermined angle; monitors, by an observing apparatus, a boundary of the shadow cast by the edge; generates, by the observing apparatus, signals representing positions of the boundary; and evaluates the signals for determining the selected values.
Abstract:
The invention relates to a vacuum coating installation comprising a container (9) in which is disposed the material (10) to be vaporized, for example SiO. The vaporization of the material (10) herein takes place by means of an electron beam gun (11) or by means of a vaporization oven. Opposing the surface of the material to be vaporized (10) is provided a synthetic film (5) to be coated which is transported further by means of a transport arrangement (4, 6, 22 to 27). Into the space between the material (10) to be vaporized and the material (5) to be coated a microwave is irradiated from an horn antenna (13).
Abstract:
A system may include determination of historical resource load information associated with an enterprise computing system, determination of resource needs of the enterprise computing system associated with a future time based on the historical resource load information, and, at the future time, automatic allocation and de-allocation of resources to the enterprise computing system based on the determined resource needs.
Abstract:
The invention relates to a method for thermal sterilization in particular of a container filled with medical material or product, the method comprising a sterilization method step in which a thermal sterilization in particular is carried out of a container filled with medical material or product in the presence of a sterilization atmosphere, containing steam, at temperatures of at least 100° C. and at increased pressure, wherein the sterilization method step comprises at least a first method stage and a second method stage, following the first method stage, with first and second method stages being carried out at different pressures with respect to one another, the pressure in the second method stage being increased relative to the pressure in the first method stage.
Abstract:
Disclosed are methods, systems and products, including a method that includes generating a system landscape overview including a context selection menu and an information window, the system landscape overview of a system landscape includes a plurality of systems identified by a unique identifier, the context selection menu enables modifying an import to at least one of the plurality of systems, and the information window provides metadata for the at least one of the plurality of systems; receiving, from the context sensitive menu, modification information representative of a schedule for an import to the at least one of the plurality of systems; determining, by a calculation engine, a workflow to install the at least one of the plurality of systems system; and providing the received modification information to a job scheduler to enable scheduling of the import to the at least one of the plurality of systems.