摘要:
A method of forming a flash memory cell is disclosed where nitrogen treatment or implantation is employed. Nitrogen introduced into the upper layers of the polysilicon of the floating gate is instrumental in forming an unusually thin layer comprising nitrogen-oxygen-silicon. This N--O--Si layer is formed while growing the bottom oxide layer of the oxide-nitride-oxide, or ONO, the intergate layer between the floating gate and the control gate of the flash memory cell. Nitrogen in the first polysilicon layer provides control for the thickness of the bottom oxide while at the same time suppressing the gradual gate oxidation (GGO) effect in the floating gate. The now augmented ONO composite through the N--O--Si layer provides an enhanced intergate dielectric and hence, a flash memory cell with more precise coupling ratio and better performance.
摘要:
A process for integrating the fabrication of a flash memory cell, on a first region of a semiconductor substrate, with the fabrication of salicided peripheral devices, on a second region of the semiconductor substrate, has been developed. The flash memory cell features SAC contact structures, located between stacked gate structures, contacting underlying source/drain regions. The stack gate structures are comprised of a polycide control gate shape, on a dielectric layer, overlying a polysilicon floating gate shape. The performance of the peripheral devices are increased via use of metal silicide layers, located on the top surface of a polysilicon gate structure, as well as on the adjacent heavily doped source/drain regions.
摘要:
A combined method of fabricating embedded flash memory cells having salicide and self-aligned contact (SAC) structures is disclosed. The SAC structure of the cell region and the salicide contacts of the peripheral region of the semiconductor device are formed using a single mask. This is accomplished by a judicious sequence of formation and removal of the various layers including the doped first and second polysilicon layers in the memory cell and of the intrinsic polysilicon layer used in the peripheral circuits. Thus, the etching of the self-aligned contact hole of the memory cell is accomplished at the same time the salicided contact hole of the peripheral region is formed. Furthermore, the thin and thick portions of the dual-gate oxide of the two regions are formed as a natural part of the total process without having to resort to photoresist masking of one portion of the gate oxide layer with the attendant contamination problems while removing the portion of the gate oxide in the other region of the substrate.
摘要:
A stacked-gate flash memory cell having a shallow trench isolation with a high-step of oxide and high lateral coupling is described. An unconventionally high isolation oxide layer is formed in a shallow trench isolation (STI) in a substrate. The deep opening in the space between the STIs is conformally lined with a polysilicon to form a floating gate extending above the opening. A conformal intergate oxide lines the entire floating gate. A layer of polysilicon overlays the intergate oxide and protrudes downward into the openings to form a control gate with increased coupling to the floating gate.
摘要:
A new method of fabricating a stacked gate Flash EEPROM device having an improved stacked gate topology is described. Isolation regions are formed on and in a semiconductor substrate. A tunneling oxide layer is provided on the surface of the semiconductor substrate. A first polysilicon layer is deposited overlying the tunneling oxide layer. The first polysilicon layer is polished away until the top surface of the polysilicon is flat and parallel to the top surface of the semiconductor substrate. The first polysilicon layer is etched away to form the floating gate. The source and drain regions are formed within the semiconductor substrate. An interpoly dielectric layer is deposited overlying the first polysilicon layer. A second polysilicon layer is deposited overlying the interpoly dielectric layer. The second polysilicon layer and the interpoly dielectric layer are etched away to form a control gate overlying the floating gate. An insulating layer is deposited overlying the oxide layer and the control gate. Contact openings are formed through the insulating layer to the underlying control gate and to the underlying source and drain regions. The contact openings are filled with a conducting layer to complete the fabrication of the Flash EEPROM device.
摘要:
A method is provided for forming a stacked-gate flash memory cell having a shallow trench isolation with a high-step of oxide and high lateral coupling. This is accomplished by first depositing an unconventionally high or thick layer of nitride and then forming a shallow trench isolation (STI) through the nitride layer into the substrate, filling the STI with isolation oxide, removing the nitride thus leaving behind a deep opening about the filled STI, filling conformally the opening with a first polysilicon layer to form a floating gate, forming interpoly oxide layer over the floating gate, and then forming a second polysilicon layer to form the control gate and finally forming the self-aligned source of the stacked-gate flash memory cell of the invention. A stacked-gate flash memory cell is also provided having a shallow trench isolation with a high-step of oxide and high lateral coupling.
摘要:
A process for fabricating a flash memory cell, featuring self-aligned contact structures, overlying and contacting, self-aligned source, and self-aligned drain regions, located between stack gate structures, has been developed. The stack gate structures, located on an underlying silicon dioxide, tunnel oxide layer, are comprised of: a capping insulator shape; a polysilicon control gate shape; an inter-polysilicon dielectric shape; and a polysilicon floating gate shape. The use of self-aligned contact structures, and self-aligned source regions, allows increased cell densities to be achieved.
摘要:
When FLASH cells are made in association with STI (as opposed to LOCOS) it is often the case that stringers of silicon nitride are left behind after the spacers have been formed. This problem has been eliminated by requiring that the oxide in the STI trenches remain in place at the time that the silicon nitride spacers are formed. After that, the oxide is removed in the usual manner, following which a SALICIDE process is used to form a self aligned source line. When this sequence is followed no stringers are left behind on the walls of the trench, guaranteeing the absence of any open circuits or high resistance regions in the source line.
摘要:
A layer of well oxide is grown over the n-well or p-well region of the semiconductor substrate. A deep n-well implant is performed in high voltage device region, followed by a deep n-well drive-in of the deep n-well implant. The well oxide is removed; the field oxide (FOX) region is created in the high voltage device region. A layer of sacrificial oxide is deposited on the surface of the semiconductor substrate. A low voltage cluster n-well implant is performed in the high voltage PMOS region of the semiconductor substrate followed, for the high voltage NMOS region, by a low voltage cluster p-well implant which is followed by a buried p-well cluster implant.
摘要:
A new method of fabricating a stacked gate Flash EEPROM device having an improved stacked gate topology is described. Isolation regions are formed on and in a semiconductor substrate. A tunneling oxide layer is provided on the surface of the semiconductor substrate. A first polysilicon layer is deposited overlying the tunneling oxide layer. The first polysilicon layer is polished away until the top surface of the polysilicon is flat and parallel to the top surface of the semiconductor substrate. The first polysilicon layer is etched away to form the floating gate. The source and drain regions are formed within the semiconductor substrate. An interpoly dielectric layer is deposited overlying the first polysilicon layer. A second polysilicon layer is deposited overlying the interpoly dielectric layer. The second polysilicon layer and the interpoly dielectric layer are etched away to form a control gate overlying the floating gate. An insulating layer is deposited overlying the oxide layer and the control gate. Contact openings are formed through the insulating layer to the underlying control gate and to the underlying source and drain regions. The contact openings are filled with a conducting layer to complete the fabrication of the Flash EEPROM device.