Abstract:
In one embodiment, a device obtains sensor data indicative of three dimensional (3-D) orientations of primary and secondary wireless power transfer (WPT) charging coils. The secondary coil is mounted to a vehicle and the primary coil provides charge to the secondary coil during charging. The device detects misalignment between the primary and secondary WPT coils based on the sensor data. The device determines a coil alignment correction to offset the detected misalignment. The device sends control commands to one or more actuators to implement the coil alignment correction by moving one or more of the coils, either directly (e.g., via directly-coupled actuators) or indirectly (e.g., via the suspension of a vehicle).
Abstract:
In one embodiment, a device obtains sensor data indicative of three dimensional (3-D) orientations of primary and secondary wireless power transfer (WPT) charging coils. The secondary coil is mounted to a vehicle and the primary coil provides charge to the secondary coil during charging. The device detects misalignment between the primary and secondary WPT coils based on the sensor data. The device determines a coil alignment correction to offset the detected misalignment. The device sends control commands to one or more actuators to implement the coil alignment correction by moving one or more of the coils, either directly (e.g., via directly-coupled actuators) or indirectly (e.g., via the suspension of a vehicle).
Abstract:
Presented herein are techniques for matching a user, e.g., a child, with an autonomous vehicle instructed to pick up the child. In an embodiment, a method includes receiving, at a server, information from an autonomous vehicle, receiving, at the server, information from a user device, receiving, at the server, information from a responsible party device, processing, by the server, the information from the autonomous vehicle, the information from the user device, and the information from the responsible party device, and based on the processing of the information from the autonomous vehicle, the information from the user device, and the information from the responsible party device, verifying, by the server, that the autonomous vehicle is matched with a user of the user device.
Abstract:
In one implementation, a method of maintaining continuous identity for mobile devices includes: obtaining a first address for a first device; and obtaining, from one or more auxiliary sensors, auxiliary sensor information related to the first device. The method also includes determining whether the auxiliary sensor information matches information associated with a second address, where the second address was previously associated with the first device. The method further includes linking the first address with the second address for the first device, in order to continue tracking the first device when the second address is no longer detected, in response to determining that the auxiliary sensor information matches information associated with the second address.
Abstract:
In one implementation, a method of maintaining continuous identity for mobile devices includes: obtaining a first address for a first device; and obtaining, from one or more auxiliary sensors, auxiliary sensor information related to the first device. The method also includes determining whether the auxiliary sensor information matches information associated with a second address, where the second address was previously associated with the first device. The method further includes linking the first address with the second address for the first device, in order to continue tracking the first device when the second address is no longer detected, in response to determining that the auxiliary sensor information matches information associated with the second address.
Abstract:
Systems, methods, and computer-readable media for controlling link selection and aggregation across multiple wireless networks based on a location of a mobile device. A location of a mobile device in a physical environment can be identified. At least portions of the physical environment can be in wireless range of a first wireless network and a second wireless network. Whether to access network services through either or both the first wireless network and the second wireless network can be determined based on the location of the mobile device in the physical environment. Further, a first interface at the mobile device to the first wireless network and a second interface at the mobile device to the second wireless network can be selectively toggled according to whether it is determined to access the network services through either or both the first wireless network and the second wireless network based on the location.
Abstract:
In one embodiment, a device in a serial network de-multiplexes a stream of traffic in the serial network into a plurality of data streams. The device determines that data from a particular data stream should be reported to an entity external to the serial network based on an event indicated by the data from the particular data stream. The device quantizes the data from the particular data stream. The device applies compression to the quantized data to form a compressed representation of the particular data stream. The applied compression is selected based on a data type associated with the data. The device sends a compressed representation of the particular data stream to the external entity as Internet Protocol (IP) traffic.
Abstract:
In one embodiment, a device determines locations of a plurality of transmitters relative to a particular wireless access point in a wireless network. One of the transmitters comprises a target client to which the particular wireless access point is to communicate. The device compares a plurality of beamforming patterns associated with the particular wireless access point to the determined locations. The device selects, based on the comparison, one of the beamforming patterns for use by the particular wireless access point to communicate with the target client. The device controls the particular wireless access point to use the selected beamforming pattern to communicate with the target client.
Abstract:
In one embodiment, a device in a wireless power transfer (WPT) system receives data regarding a vehicle equipped with a vehicle-based charging coil configured to receive electrical power transferred from a ground-based charging coil of the WPT system. The device determines, based on the received data, a time at which the vehicle-based charging coil is expected to be in charging proximity of the ground-based coil. Based on the received data, the device determines a gap distance between the vehicle-based charging coil and the ground-based charging coil to optimize the transfer of electrical power from the ground-based charging coil to the vehicle-based charging coil when the coils are in charging proximity of one another. The device sends control instructions to an adjustment system to implement the identified gap distance in advance of the determined time by adjusting a height of the vehicle-based charging coil or the ground-based charging coil.
Abstract:
In one embodiment, a prediction agent process collects travel information of a vehicle, and determines a profile of the vehicle, the profile indicative of one or more real-time resource requirements of the vehicle. The prediction agent process also predicts a path of the vehicle based on the travel information, and determines a next resource node along the predicted path having one or more real-time resources corresponding to the one or more real-time resource requirements of the vehicle. After further predicting a time of arrival of the vehicle being within range of the next resource node based on the travel information, the prediction agent process informs the next resource node of the profile of the vehicle and the predicted time of arrival, the informing causing the next resource node to operate the one or more real-time resources for the vehicle for the predicted time of arrival.