摘要:
Embodiments include an optical apparatus and associated method of assembling. The optical apparatus comprises a substrate defining a first surface and a channel formed relative thereto, the substrate including one or more waveguides extending to a sidewall partly defining the channel, a plurality of first electrical contacts formed on the first surface. The optical apparatus further comprises a carrier member defining a second surface and at least a third surface, the second surface coupled with the first surface of the substrate. The optical apparatus further at least one optical component coupled with the second surface and at least partly disposed within the channel, wherein the at least one optical component is optically coupled with the one or more waveguides and electrically connected with the first electrical contacts via a plurality of second electrical contacts at the third surface of the carrier member.
摘要:
Embodiments herein describe an optical receiver that demultiplexes a multi-wavelength optical signal into a plurality of optical signals with respective wavelengths. Stated differently, the various wavelengths in the received optical signal are separated into different optical signals with different wavelengths. In one embodiment, the optical receiver includes a plurality of optical filters that is aligned with a mirror to perform the demultiplexing function. The embodiments herein disclose optical receivers where the optical components performing the demultiplexing function using a ball lens aligned with optical filters.
摘要:
Embodiments described herein include an apparatus for passive alignment of one or more optical fibers with photonic circuitry. Generally, the apparatus includes a substrate that defines a channel configured to receive an engagement portion of a ferrule member. The apparatus further includes deformable and/or non-deformable members within the channel that form alignment faces arranged at opposite ends of the channel. The alignment faces can deform and/or limit the movement of the engagement portion of the ferrule member in order to align the optical fibers along a first dimension. A top surface of the substrate may be configured to engage with one or more lateral surfaces of the ferrule member when the engagement portion is received into the channel, thereby aligning the optical fibers along a second dimension.
摘要:
An optical device may include an optical bench used align a photonic chip to a receptacle. In one embodiment, a surface of the optical bench defines an alignment plane. When a fiber stub in the receptacle is disposed on the surface, an optical path in the stub is parallel with the alignment plane. By disposing the photonic chip on the same surface, the chip and the stub can be aligned such that optical signals can be transmitted between the stub and an optical component (e.g., light source or waveguide) in the photonic chip. In one embodiment, the optical path in the stub and the optical component may have the same height relative to the optical bench. Moreover, the optical device may include a direct thermal connection between the assembly and the heat sink, and thus, have better thermal coupling relative to using thermal pads
摘要:
Described herein is an optical transmitter that includes an RF signal path that is, at least partially, parallel with an optical signal path. In one embodiment, an electrical transmission element, which defines the RF signal path, is disposed between a laser emitting the optical signal and a side wall of a package containing the optical transmitter. Although the RF and optical signals may propagate along different planes within the optical transmitter, both signals are received at an optical modulator. Using the RF signal, the optical modulator modulates the optical signal (e.g., a continuous wave) to generate a modulated optical signal. The optical modulator then outputs the modulated signal to a receptacle coupled to a light carrying medium such as a fiber optic cable.
摘要:
An optical transmitter may include a chip stack that includes an electrical IC that is mounted using solder balls to a photonic chip. These solder connections permit the electrical IC and the photonic chip to communicate. In addition, the transmitter may include a PCB coupled to the stack so that electrical signals in the PCB are transmitted to the IC and photonic chip (and vice versa). Instead of coupling the PCB to the stack using wire bonds attached to pads on a surface of the photonic chip, at least a portion of the PCB is disposed between the photonic chip and electrical IC. The PCB may also include bond pads used to form a direct solder connection to the electrical IC. As such, the electrical IC may include direct solder connections to both the PCB and the photonic chip.