摘要:
A microelectromechanical (MEMS) device includes a substrate, a movable element over the substrate, and an actuation electrode above the movable element. The movable element includes a deformable layer and a reflective element. The deformable layer is spaced from the reflective element.
摘要:
A microelectromechanical (MEMS) device includes a first reflective layer, a movable element, and an actuation electrode. The movable element is over the first reflective layer. The movable element includes a deformable layer and a reflective element. The actuation electrode is between the deformable layer and the reflective element.
摘要:
A microelectromechanical (MEMS) device includes a substrate, a movable element over the substrate, and an actuation electrode above the movable element. The movable element includes a deformable layer and a reflective element. The deformable layer is spaced from the reflective element.
摘要:
A microelectromechanical (MEMS) device includes a substrate, a movable element over the substrate, and an actuation electrode above the movable element. The movable element includes a deformable layer and a reflective element. The deformable layer is spaced from the reflective element.
摘要:
A microelectromechanical (MEMS) device includes a first reflective layer, a movable element, and an actuation electrode. The movable element is over the first reflective layer. The movable element includes a deformable layer and a reflective element. The actuation electrode is between the deformable layer and the reflective element.
摘要:
A microelectromechanical (MEMS) device includes a substrate, a movable element over the substrate, and an actuation electrode above the movable element. The movable element includes a deformable layer and a reflective element. The deformable layer is spaced from the reflective element.
摘要:
MEMS devices such as interferometric modulators are described having movable layers that are mechanically isolated. The movable layers are electrically attractable such that they can be selectively moved between a top and bottom electrode through application of a voltage. In interferometric modulators, the movable layers are reflective such that an optically resonant cavity is formed between the layer and a partially reflective layer, thereby providing a display pixel that can be turned on or off depending on the distance between the reflective layers in the resonant cavity.
摘要:
MEMS devices such as interferometric modulators are described having movable layers that are mechanically isolated. The movable layers are electrically attractable such that they can be selectively moved between a top and bottom electrode through application of a voltage. In interferometric modulators, the movable layers are reflective such that an optically resonant cavity is formed between the layer and a partially reflective layer, thereby providing a display pixel that can be turned on or off depending on the distance between the reflective layers in the resonant cavity.
摘要:
Methods and apparatus are provided for controlling a depth of a cavity between two layers of a light modulating device. A method of making a light modulating device includes providing a substrate, forming a sacrificial layer over at least a portion of the substrate, forming a reflective layer over at least a portion of the sacrificial layer, and forming one or more flexure controllers over the substrate, the flexure controllers configured so as to operably support the reflective layer and to form cavities, upon removal of the sacrificial layer, of a depth measurably different than the thickness of the sacrificial layer, wherein the depth is measured perpendicular to the substrate.
摘要:
Methods of forming a protective coating on one or more surfaces of a microelectromechanical device are disclosed comprising the steps of forming a composite layer of a sacrificial material and a protective material, and selectively etching the sacrificial material to form a protective coating. The protective coatings of the invention preferably improve one or more aspects of the performance of the microelectromechanical devices in which they are incorporated. Also disclosed are microelectromechanical devices formed by methods of the invention, and visual display devices incorporating such devices.