Abstract:
Data storage operations, including content-indexing, containerized deduplication, and policy-driven storage, are performed within a cloud environment. The systems support a variety of clients and cloud storage sites that may connect to the system in a cloud environment that requires data transfer over wide area networks, such as the Internet, which may have appreciable latency and/or packet loss, using various network protocols, including HTTP and FTP. Methods are disclosed for content indexing data stored within a cloud environment to facilitate later searching, including collaborative searching. Methods are also disclosed for performing containerized deduplication to reduce the strain on a system namespace, effectuate cost savings, etc. Methods are disclosed for identifying suitable storage locations, including suitable cloud storage sites, for data files subject to a storage policy. Further, systems and methods for providing a cloud gateway and a scalable data object store within a cloud environment are disclosed, along with other features.
Abstract:
System and methods for selectively or automatically migrating resources between storage operation cells are provided. In accordance with one aspect of the invention, a management component within the storage operation system may monitor system operation and migrate components from storage operation cell to another to facilitate failover recovery, promote load balancing within the system and improve overall system performance as further described herein. Another aspect of the invention may involve performing certain predictive analyses on system operation to reveal trends and tendencies within the system. Such information may be used as the basis for potentially migrating components from one storage operation cell to another to improve system performance and reduce or eliminate resource exhaustion or congestion conditions.
Abstract:
System and methods for selectively or automatically migrating resources between storage operation cells are provided. In accordance with one aspect of the invention, a management component within the storage operation system may monitor system operation and migrate components from storage operation cell to another to facilitate failover recovery, promote load balancing within the system and improve overall system performance as further described herein. Another aspect of the invention may involve performing certain predictive analyses on system operation to reveal trends and tendencies within the system. Such information may be used as the basis for potentially migrating components from one storage operation cell to another to improve system performance and reduce or eliminate resource exhaustion or congestion conditions.
Abstract:
Systems and methods for managing electronic data are disclosed. Various data management operations can be performed based on a metabase formed from metadata. Such metadata can be identified from an index of data interactions generated by a journaling module, and obtained from their associated data objects stored in one or more storage devices. In various embodiments, such processing of the index and storing of the metadata can facilitate, for example, enhanced data management operations, enhanced data identification operations, enhanced storage operations, data classification for organizing and storing the metadata, cataloging of metadata for the stored metadata, and/or user interfaces for managing data. In various embodiments, the metabase can be configured in different ways. For example, the metabase can be stored separately from the data objects so as to allow obtaining of information about the data objects without accessing the data objects or a data structure used by a file system.
Abstract:
Described are systems and methods for storing a variable number of instances of data objects (e.g., 1, 2, 3, or up to N−1 instances, where N is the number of instances of the data object included in primary data) in secondary storage across a data storage network. In some examples, a system for storing a variable number of instances of data objects includes, one or more computing devices storing a set of data objects and multiple storage devices distinct from the one or more computing devices. Each of the multiple storage devices is configured to store at least a single instance of a data object. The system also includes a database configured to store information associated with the data objects. This information includes substantially unique identifiers for the data objects and, for each of the data objects, a number of instances of the data object stored on the multiple storage devices.
Abstract:
In accordance with some aspects of the present invention, systems and methods are provided for dynamically and/or automatically selecting and/or modifying data path definitions that are used in performing storage operations on data. Alternate data paths may be specified or selected that use some or all resources that communicate with a particular destination to improve system reliability and performance. The system may also dynamically monitor and choose data path definitions to optimize system performance, conserve storage media and promote balanced load distribution.
Abstract:
A system and method for data deduplication is presented. Data received from one or more computing systems is deduplicated, and the results of the deduplication process stored in a reference table. A representative subset of the reference table is shared among a plurality of systems that utilize the data deduplication repository. This representative subset of the reference table can be used by the computing systems to deduplicate data locally before it is sent to the repository for storage. Likewise, it can be used to allow deduplicated data to be returned from the repository to the computing systems. In some cases, the representative subset can be a proper subset wherein a portion of the referenced table is identified shared among the computing systems to reduce bandwidth requirements for reference-table synchronization.
Abstract:
A system and method for data deduplication is presented. Data received from one or more computing systems is deduplicated, and the results of the deduplication process stored in a reference table. A representative subset of the reference table is shared among a plurality of systems that utilize the data deduplication repository. This representative subset of the reference table can be used by the computing systems to deduplicate data locally before it is sent to the repository for storage. Likewise, it can be used to allow deduplicated data to be returned from the repository to the computing systems. In some cases, the representative subset can be a proper subset wherein a portion of the referenced table is identified shared among the computing systems to reduce bandwidth requirements for reference-table synchronization.
Abstract:
System and methods for selectively or automatically migrating resources between storage operation cells are provided. In accordance with one aspect of the invention, a management component within the storage operation system may monitor system operation and migrate components from storage operation cell to another to facilitate failover recovery, promote load balancing within the system and improve overall system performance as further described herein. Another aspect of the invention may involve performing certain predictive analyses on system operation to reveal trends and tendencies within the system. Such information may be used as the basis for potentially migrating components from one storage operation cell to another to improve system performance and reduce or eliminate resource exhaustion or congestion conditions.
Abstract:
System and methods for selectively or automatically migrating resources between storage operation cells are provided. In accordance with one aspect of the invention, a management component within the storage operation system may monitor system operation and migrate components from storage operation cell to another to facilitate failover recovery, promote load balancing within the system and improve overall system performance as further described herein. Another aspect of the invention may involve performing certain predictive analyses on system operation to reveal trends and tendencies within the system. Such information may be used as the basis for potentially migrating components from one storage operation cell to another to improve system performance and reduce or eliminate resource exhaustion or congestion conditions.