Abstract:
A transistor package includes a lead frame and a gallium nitride (GaN) transistor attached to the lead frame. The lead frame and the GaN transistor are surrounded by an over-mold with a glass transition temperature greater than about 135° C. and a flexural modulus less than about 20 GPa. Using an over-mold with a glass transition temperature greater than about 135° C. and a flexural modulus less than about 20 GPa allows the over-mold to handle the heat produced by the GaN transistor while preventing damage to the GaN transistor due to thermal expansion and/or contraction of the over-mold.
Abstract:
A transistor package includes a lead frame, a wide band-gap transistor attached to the lead frame, and an over-mold surrounding the lead frame and the wide band-gap transistor. The wide band-gap transistor has a peak output power greater than 150 W when operated at a frequency up to 3.8 GHz. Using an over-mold along with a wide band-gap transistor in the transistor package allows the transistor package to achieve an exceptionally high efficiency, gain, and bandwidth, while keeping the manufacturing cost of the transistor package low.
Abstract:
A transistor package includes a lead frame, a wide band-gap transistor attached to the lead frame, and an over-mold surrounding the lead frame and the wide band-gap transistor. The wide band-gap transistor has a peak output power greater than 150 W when operated at a frequency up to 3.8 GHz. Using an over-mold along with a wide band-gap transistor in the transistor package allows the transistor package to achieve an exceptionally high efficiency, gain, and bandwidth, while keeping the manufacturing cost of the transistor package low.
Abstract:
A transistor package includes a lead frame and a gallium nitride (GaN) transistor attached to the lead frame. The lead frame and the GaN transistor are surrounded by an over-mold with a glass transition temperature greater than about 135° C. and a flexural modulus less than about 20 GPa. Using an over-mold with a glass transition temperature greater than about 135° C. and a flexural modulus less than about 20 GPa allows the over-mold to handle the heat produced by the GaN transistor while preventing damage to the GaN transistor due to thermal expansion and/or contraction of the over-mold.