Abstract:
Solid state downlights include a fixture that has a solid state lighting housing, a plurality of light emitting diodes within the solid state lighting housing and a junction box, and at least one mounting structure that is configured to releasably attach the fixture directly to a ceiling to mount the fixture within an opening in the ceiling.
Abstract:
A lighting apparatus includes a lighting circuit (e.g., an LED lighting circuit) and a driver circuit having an output coupled to the lighting circuit and an input configured to be coupled to a power source, such as a phase cut dimmer, that provides a varying voltage waveform. The driver circuit includes an electromagnetic interference (EMI) suppression inductor configured to be coupled in series with the power source and a bypass circuit configured to divert current from the EMI filter inductor to limit a current in the EMI filter inductor.
Abstract:
Some embodiments provide a lighting apparatus including a plurality of lighting circuits coupled in series. Each lighting circuit includes a control circuit configured to selectively provide current to at least one LED and at least one charge storage device coupled to the at least one LED. The control circuit may be configured to cause the at least one charge storage device to be selectively charged from a current source and to be discharged via the at least one LED responsive to a varying input. For example, the control circuit may be configured to limit current through the at least one LED to thereby divert current to the at least one charge storage device.
Abstract:
A voltage converter includes a converter circuit and a control circuit coupled to the converter circuit and configured to selectively operate the converter circuit in a boost mode or a floating buck mode in response to a level of an input voltage supplied to the voltage converter circuit. The converter circuit may further include an inductor, a first control switch coupled to the control circuit, and a second control switch coupled to the control circuit. The control circuit may be configured to control a state of the first control switch in the boost mode in response to a level of current in the inductor, and the control circuit may be configured to control a state of the second control switch in the floating buck mode in response to the level of current in the inductor.
Abstract:
A solid state lighting fixture with an integrated driver circuit. A housing has a base end and an open end through which light is emitted from the fixture. The reflective interior surface of the fixture and the base define an optical chamber. At least one, and often multiple, light sources are mounted at the fixture base along with the circuitry necessary to drive and/or control the light sources. The drive circuit and the light sources are both located in the optical chamber. A reflective cone fits within the optical chamber such that it covers most of the drive circuit and other components at the base of fixture that might absorb light. The reflective cone is shaped to define a hole that is aligned with the light sources so that light may be emitted through the hole toward the open end of the fixture.
Abstract:
A power supply includes a switch configured to control flow of current output from an inductor to an output of the power supply. The switch receives a switching signal from a control circuit. An auxiliary bias is generated to power the control circuit. A bias circuit outputs a bias signal that is used to generate the auxiliary bias. The bias circuit senses a level of the auxiliary bias to control output of the bias signal. Output of the bias signal may be controlled to maintain the level of the auxiliary bias at a target level or within a target range.
Abstract:
A lighting apparatus includes a lighting circuit (e.g., an LED lighting circuit) and a driver circuit having an output coupled to the lighting circuit and an input configured to be coupled to a power source, such as a phase cut dimmer, that provides a varying voltage waveform. The driver circuit includes an electromagnetic interference (EMI) suppression inductor configured to be coupled in series with the power source and a bypass circuit configured to divert current from the EMI filter inductor to limit a current in the EMI filter inductor.
Abstract:
Solid state downlights include a fixture that has a solid state lighting housing, a plurality of light emitting diodes within the solid state lighting housing and a junction box, and at least one mounting structure that is configured to releasably attach the fixture directly to a ceiling to mount the fixture within an opening in the ceiling.
Abstract:
A solid state lighting apparatus can include an electrical connector that is configured to releasably couple to a standardized electrical fixture having ac voltage provided thereat, where the electrical connector includes an opening that is configured to provide a recess in the electrical connector including an interior contact to provide the ac voltage in the recess when connected to the standardized electrical fixture. A protective circuit stage of a solid state lighting driver circuit can be in the recess to electrically coupled to the interior contact. An electrical wire can include a first portion that can be electrically coupled to the protective circuit stage in the recess and a second portion that is outside the recess. A solid state lighting housing can be configured to releasably couple to the second portion of the electrical wire.
Abstract:
A solid state lighting apparatus can include an electrical connector that is configured to releasably couple to a standardized electrical fixture having ac voltage provided thereat, where the electrical connector includes an opening that is configured to provide a recess in the electrical connector including an interior contact to provide the ac voltage in the recess when connected to the standardized electrical fixture. A protective circuit stage of a solid state lighting driver circuit can be in the recess to electrically coupled to the interior contact. An electrical wire can include a first portion that can be electrically coupled to the protective circuit stage in the recess and a second portion that is outside the recess. A solid state lighting housing can be configured to releasably couple to the second portion of the electrical wire.