Abstract:
An exemplary embodiment includes a blending chamber having a urea inlet, a blending chamber gas inlet, and a blending chamber outlet. A urea source provides a pressurized urea solution to the urea inlet at a urea injection pressure, and a pressurized gas source transmits pressurized gas to the blending chamber gas inlet via a passageway. The passageway is configured to decrease pressure of the pressurized gas transmitted along its length from a first pressure of gas received from the pressurized gas source to a second pressure of gas provided to the blending chamber gas inlet. The first pressure of gas received from the pressurized gas source is greater than the urea injection pressure and the second pressure of gas provided to the blending chamber gas inlet is less than the urea injection pressure.
Abstract:
An exemplary embodiment includes a blending chamber having a urea inlet, a blending chamber gas inlet, and a blending chamber outlet. A urea source provides a pressurized urea solution to the urea inlet at a urea injection pressure, and a pressurized gas source transmits pressurized gas to the blending chamber gas inlet via a passageway. The passageway is configured to decrease pressure of the pressurized gas transmitted along its length from a first pressure of gas received from the pressurized gas source to a second pressure of gas provided to the blending chamber gas inlet. The first pressure of gas received from the pressurized gas source is greater than the urea injection pressure and the second pressure of gas provided to the blending chamber gas inlet is less than the urea infection pressure.
Abstract:
A reductant system for an aftertreatment system of an internal combustion engine is disclosed. The reductant system includes at least one reductant feed line and a reductant system component such as a dosing module. The feed line is connected to the dosing module with a fluid connector. The fluid connector includes a body made from a first material that has a low heat conductivity and an insert made from a second material that has a greater heat conductivity than that of the first material. The insert extends from the body of the fluid connector into a storage chamber of the dosing module, and conducts heat from heated reductant in the feed line to the reductant stored in the storage chamber.
Abstract:
Apparatuses and methods for urea dosing of an exhaust after treatment system are disclosed. Exemplary apparatuses include a chamber configured to receive pressurized gas at a first inlet, receive urea solution at a second inlet and provide a combined flow of pressurized gas and urea to an outlet, flow passage extending from the first inlet to a seating surface, and a valve member configured to move between an open position in which the valve member is spaced apart from the seating surface and a closed position in which the valve member contacts the seating surface. As the valve member moves from the open position to the closed position, the valve member contacts the seating surface at a first location and wipes an area of the seating surface extending from the first location in a direction toward the flow passage.
Abstract:
A system is provided for delivery of diesel exhaust fluid or other reductant to an injector for release into an engine exhaust aftertreatment system. The injector includes a nozzle assembly that thermally shields the diesel exhaust fluid from the exhaust gas temperatures. A diesel exhaust fluid delivery procedure is also disclosed for nozzle cooling prior to operation of the injector for emissions reduction.
Abstract:
A system is provided for delivery of diesel exhaust fluid or other reductant to an injector for release into an engine exhaust aftertreatment system. The injector includes a nozzle assembly that thermally shields the diesel exhaust fluid from the exhaust gas temperatures. A diesel exhaust fluid delivery procedure is also disclosed for nozzle cooling prior to operation of the injector for emissions reduction.
Abstract:
An exemplary embodiment includes a blending chamber having a urea inlet, a blending chamber gas inlet, and a blending chamber outlet. A urea source provides a pressurized urea solution to the urea inlet at a urea injection pressure, and a pressurized gas source transmits pressurized gas to the blending chamber gas inlet via a passageway. The passageway is configured to decrease pressure of the pressurized gas transmitted along its length from a first pressure of gas received from the pressurized gas source to a second pressure of gas provided to the blending chamber gas inlet. The first pressure of gas received from the pressurized gas source is greater than the urea injection pressure and the second pressure of gas provided to the blending chamber gas inlet is less than the urea injection pressure.
Abstract:
A system is provided for delivery of diesel exhaust fluid or other reductant to an injector for release into an engine exhaust aftertreatment system. The injector includes a nozzle assembly that thermally shields the diesel exhaust fluid from the exhaust gas temperatures. A diesel exhaust fluid delivery procedure is also disclosed for nozzle cooling prior to operation of the injector for emissions reduction.
Abstract:
A system is provided for delivery of diesel exhaust fluid or other reductant to an injector for release into an engine exhaust aftertreatment system. The injector includes a nozzle assembly that thermally shields the diesel exhaust fluid from the exhaust gas temperatures. A diesel exhaust fluid delivery procedure is also disclosed for nozzle cooling prior to operation of the injector for emissions reduction.
Abstract:
An exemplary embodiment includes a blending chamber having a urea inlet, a blending chamber gas inlet, and a blending chamber outlet. A urea source provides a pressurized urea solution to the urea inlet at a urea injection pressure, and a pressurized gas source transmits pressurized gas to the blending chamber gas inlet via a passageway. The passageway is configured to decrease pressure of the pressurized gas transmitted along its length from a first pressure of gas received from the pressurized gas source to a second pressure of gas provided to the blending chamber gas inlet. The first pressure of gas received from the pressurized gas source is greater than the urea injection pressure and the second pressure of gas provided to the blending chamber gas inlet is less than the urea injection pressure.