Abstract:
Provided is a sheet-shaped mold possessing a high strength and having a low breakage rate in demolding even in a case where the mold is thin and has a large-area. The sheet-shaped mold is prepared by combining a cured silicone rubber containing a polyorganosiloxane and a fiber for reinforcing the cured silicone rubber. The fiber may comprise a cellulose nanofiber. The sheet-shaped mold may have an uneven pattern on at least one surface (or side) thereof. The fiber may be surface-treated with a hydrophobizing agent. The fiber may forma nonwoven fabric, and the nonwoven fabric may be impregnated with the cured silicone rubber. The cured silicone rubber may comprise a two-component curable silicone rubber having a polydimethylsiloxane unit. The sheet-shaped mold may be a mold for nanoimprint lithography using a photo-curable resin.
Abstract:
The present invention provides an insulating film forming composition that excels in insulating properties and heat resistance, suppresses the occurrence of warpage, and can form an insulating film with excellent adhesion. The insulating film forming composition of the present invention contains, as a polymerizable compound, a polyorganosilsesquioxane containing siloxane constituent units; wherein the total content of: constituent units represented by formula (I) [RaSiO3/2] (I) and constituent units represented by formula (II) [RaSiO2/2(ORb)] (II) is greater than or equal to 55 mol % of the total amount of the siloxane constituent units; and the polyorganosilsesquioxane has a number average molecular weight of from 500 to 10000 and an epoxy equivalent of from 200 to 2000 g/eq.
Abstract:
Disclosed is a curable composition for nanoimprinting, which includes one or more polymerizable monomers, in which one or more monofunctional radically polymerizable monomers occupy 90 percent by weight or more of the one or more polymerizable monomers, and the one or more monofunctional radically polymerizable monomers give a polymer having a glass transition temperature of 25° C. or higher. The one or more monofunctional radically polymerizable monomers are preferably at least one compound selected from (meth)acrylic ester compounds, styrenic compounds, and vinyl ether compounds.
Abstract:
Provided is a sheet-like prepreg that has both a low coefficient of linear thermal expansion and high flexibility and offers excellent anti-warpage performance and cracking resistance. The sheet-like prepreg according to the present invention includes a curable composition and a sheet-like porous support impregnated with the curable composition. The sheet-like porous support is made from a material having a coefficient of linear thermal expansion of 10 ppm/K or less. The sheet-like prepreg gives a cured product having a glass transition temperature of −60° C. to 100° C. The curable composition includes one or more curable compounds (A) and at least one of a curing agent (B) and a curing catalyst (C). The curable compounds (A) include an epoxide having a weight per epoxy equivalent of 140 to 3000 g/eq in an amount of 50 weight percent or more of the totality of the curable compounds (A).
Abstract:
Provided is a photosensitive composition for volume hologram recording capable of forming a volume hologram recording medium that less shrinks upon curing in hologram recording (in hologram formation) and resists cracking. The photosensitive composition for volume hologram recording contains an alicyclic epoxy compound (A) represented by Formula (I); a thermal acid generator (B); a radically polymerizable compound (C); a radical polymerization initiator (D); and at least one epoxy compound (E) selected from the group consisting of compounds represented by Formula (1), epoxidized fatty acid esters, and epoxidized conjugated diene polymers.