Abstract:
A camshaft phaser includes an input member; an output member defining an advance chamber and a retard chamber with the input member; a valve spool coaxially disposed within the output member such that the valve spool is rotatable relative to the output member and the input member, the valve spool defining a supply chamber and a vent chamber with the output member; an actuator which rotates the valve spool in order to change the position of the output member relative to the input member by supplying pressurized oil from the supply chamber to one of the advance chamber and the retard chamber and venting oil to the vent chamber from the other of the supply chamber and the advance chamber; and a check valve which allows oil to flow from the vent chamber to the supply chamber and prevents oil from flowing from the supply chamber to the vent chamber.
Abstract:
A camshaft phaser includes a stator having a plurality of lobes; a rotor coaxially disposed within the stator and having a plurality of vanes interspersed with the lobes defining advance chambers and retard chambers; a camshaft phaser attachment bolt for attaching the camshaft phaser to a camshaft, the camshaft phaser attachment bolt defining a valve bore that is coaxial with the stator. A supply passage extends radially outward from the valve bore and includes a downstream end that is proximal to the valve bore and an upstream end that is distal from the valve bore and separated from the downstream end by a check valve seat. A check valve member in the supply passage is biased toward the check valve seat by centrifugal force. A valve spool is moveable within the valve bore such that the valve spool directs oil that has passed through the supply passage.
Abstract:
A camshaft phaser includes a stator; a rotor defining an advance chamber and a retard chamber with the stator; a valve spool that is rotatable about an axis and defining a supply chamber and a vent chamber with the rotor; an actuator which rotates the valve spool to change the position of the rotor relative to the stator by 1) supplying oil from the supply chamber to the advance chamber and venting oil from the retard chamber to the vent chamber and 2) supplying oil from the supply chamber to the retard chamber and venting oil from the advance chamber to the vent chamber; and a check valve which is displaceable axially between an open position which allows oil to flow from the vent chamber to the supply chamber and a closed position which prevents oil from flowing from the supply chamber to the vent chamber.
Abstract:
A seal assembly configured to provide a fluidic seal between openings into objects. A first object is configured to define a first opening that includes a first tapered section tapered from a first start diameter to a first finish diameter. A second object is configured to define a second opening that includes a second tapered section tapered from a second start diameter to a second finish diameter. The assembly includes a straight tube characterized by an outer diameter less than the first start diameter and the second start diameter, and greater than the first finish diameter and the second finish diameter. A fluidic seal is formed when the first object and the second object are forced together with the straight tube therebetween such that the first tapered section and the second tapered section deform the straight tube to form a seal therebetween by radial compression of the straight tube.
Abstract:
A heater includes a fuel cell stack assembly disposed within a heater housing and includes a plurality of fuel cells which convert chemical energy from a fuel into heat and electricity through a chemical reaction with an oxidizing agent. A combustor disposed within the heater housing receives an anode exhaust and a cathode exhaust from the fuel cell stack assembly and combusts a mixture of the anode exhaust and the cathode exhaust to produce a heated combustor exhaust. The combustor includes a combustor exhaust outlet for discharging the heated combustor exhaust into the heater housing. A baffle disposed around the fuel cell stack assembly and the combustor defines a heat transfer channel radially between the heater housing and the baffle. A flow director in fluid communication with the combustor exhaust outlet and the heat transfer channel communicates the heated combustor exhaust to the heat transfer channel.
Abstract:
A camshaft phaser includes an input member and an output member defining an advance chamber and a retard chamber; a valve spool moveable along an axis between an advance position and a retard position and having a valve spool bore with a phasing volume and a venting volume defined therein such that the phasing volume is fluidly segregated from the venting volume, the valve spool having a first spool recirculation passage and a second spool recirculation passage which is diametrically opposed to the first spool recirculation passage. The first spool recirculation passage and the second spool recirculation passage provide paths for oil to flow from the advance chamber or the retard chamber to the phasing volume depending on the position of the valve spool.
Abstract:
A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.
Abstract:
A heater includes a heater housing with a fuel cell stack assembly disposed therein. The fuel cell stack assembly includes a plurality of fuel cells which convert chemical energy from a fuel into heat and electricity through a chemical reaction with an oxidizing agent. The fuel cell stack assembly includes a fuel cell manifold for receiving the fuel within a fuel inlet and the oxidizing agent within an oxidizing agent inlet and distributing the fuel and oxidizing agent to the fuel cells. A fuel supply conduit supplies the fuel to the fuel inlet and an oxidizing agent supply conduit supplies the oxidizing agent to the oxidizing agent inlet. A sonic orifice is disposed between the fuel supply conduit and the fuel inlet or between the oxidizing agent supply conduit and the oxidizing agent inlet, thereby limiting the velocity of the fuel or the oxidizing agent through the sonic orifice.
Abstract:
A camshaft phaser includes an input member an output member defining an advance chamber and a retard chamber; a valve spool having a valve spool bore; a first recirculation check valve and a second recirculation check valve disposed within the valve spool bore; and a biasing member which biases the first recirculation check valve and the second recirculation check valve away from each other. The first recirculation check valve allows oil to pass from the advance chamber to the retard chamber and prevents oil from passing from the retard chamber to the advance chamber when the valve spool is in a retard position. The second recirculation check valve allows oil to pass from the retard chamber to the advance chamber and prevents oil from passing from the advance chamber to the retard chamber when the valve spool is in an advance position.
Abstract:
A heater includes a heater housing with a support plate secured to one end. A fuel cell stack assembly is disposed within the heater housing and includes a plurality of fuel cells which convert chemical energy from a fuel into heat and electricity through a chemical reaction with an oxidizing agent. The fuel cell stack assembly includes a fuel cell manifold for receiving the fuel and distributing the fuel to the plurality of fuel cells and for receiving the oxidizing agent and distributing the oxidizing agent to the plurality of fuel cells. A fuel supply conduit supplies the fuel to the fuel cell manifold and an oxidizing agent supply conduit supplies the oxidizing agent to the fuel cell manifold. The fuel cell stack assembly is supported on the support plate by one of the fuel supply conduit and the oxidizing agent supply conduit.