Abstract:
A boron nitride powder includes boron nitride aggregated grains that are formed by aggregation of scaly hexagonal boron nitride primary particles, the boron nitride powder having the following characteristic properties (A) to (C): (A) the primary particles of the scaly hexagonal boron nitride have an average long side length of 1.5 μm or more and 3.5 μm or less and a standard deviation of 1.2 μm or less; (B) the boron nitride aggregated grains have a grain strength of 8.0 MPa or more at a cumulative breakdown rate of 63.2% and a grain strength of 4.5 MPa or more at a cumulative breakdown rate of 20.0%; and (C) the boron nitride powder has an average particle diameter of 20 μm or more and 100 μm or less. Also provided are a method for producing the same and a thermally conductive resin composition including the same.
Abstract:
A boron nitride fine particle has low major diameter/thickness (aspect) ratio, high purity and high crystallinity, and also has an average particle diameter of 0.05 to 2.0 μm, a graphitization index of 3 or less, and a total oxygen content of 0.20% by mass or less, with an average value of a major diameter/thickness ratio of scaly particles being 6.0 or less. A method of producing a boron nitride fine particle includes introducing ammonia and an alkoxide borate at an ammonia/alkoxide borate molar ratio of 1 to 5 in a reaction vessel in an inert gas atmosphere for heating at 800 to 1,350° C. within 30 seconds thereby obtaining a boron nitride precursor, and then heating the boron nitride precursor at 1,650 to 2,200° C. for at least 0.5 hour in an inert gas atmosphere.
Abstract:
Provided is a boron nitride powder including: an agglomerated particle obtained by aggregating flaky primary particles, in which in-plane directions of the primary particles are oriented in a direction parallel to a short-side direction of the agglomerated particle. In addition, provided is a method for producing a boron nitride powder including: a nitriding step of firing a boron carbide powder having an aspect ratio of 1.5 to 10 in a nitrogen pressurized atmosphere to obtain a fired product; and a crystallization step of heating a formulation that contains the fired product and a boron source to produce flaky boron nitride primary particles and obtaining a boron nitride powder containing an agglomerated particle obtained by aggregating the primary particles.
Abstract:
To provide a boron nitride powder having excellent heat conductivity and high particle strength. Provided is a boron nitride powder which comprises bulky boron nitride formed such that scaly primary particles of hexagonal boron nitride are aggregated to form bulky particles, and which has the following characteristics (A) to (C): (A) a particle strength of the bulky particles at a cumulative breakdown rate of 63.2% is 5.0 MPa or more; (B) an average particle size of the boron nitride powder is 2 μm or more and 20 μm or less; and (C) an orientation index of the boron nitride powder as determined from X-ray diffraction is 20 or less.
Abstract:
A method of producing a spherical boron nitride fine particle includes reacting ammonia with an alkoxide borate at an ammonia/alkoxide borate molar ratio of 1 to 10 in an inert gas stream at 750° C. or higher within 30 seconds, then applying heat treatment to a reaction product in an atmosphere of ammonia gas or a mixed gas of ammonia gas and an inert gas at 1,000 to 1,600° C. for at least 1 hour, and further firing the reaction product in an inert gas atmosphere at 1,800 to 2,200° C. for at least 0.5 hour.
Abstract:
One aspect of the present disclosure provides a hexagonal boron nitride powder having a purity of 98 mass % or more and a specific surface area of less than 2.0 m2/g.
Abstract:
One aspect of the present invention provides a boron nitride powder that contains aggregated particles formed through aggregation of primary particles of boron nitride. The cumulative pore volume of the boron nitride powder within a fine pore radius of 0.02-1.2 μm as measured by a mercury porosimeter is 0.65 mL/g or less.
Abstract:
A surface-treated aggregated boron nitride powder is prepared by using the boron nitride powder as the raw material, adding an oxidizer to the boron nitride aggregated grains, wet-pulverizing or wet-crushing the grains for surface modification treatment of the particles and allowing reaction of the particles with a metal coupling agent. The surface-treated boron nitride aggregated grains are formed by aggregation of hexagonal h-BN primary particles; (B) have any one or more of Si, Ti, Zr, Ce, Al, Mg, Ge, Ga, and V in an amount of 0.1 atm % or more and 3.0 atm % or less in its composition on the surface of 10 nm; (C) have a crushing strength of 5 MPa or more; and (D) have an average particle diameter of 20 μm or more and 100 μm or less.
Abstract:
One aspect of the present disclosure provides a boron nitride powder containing agglomerated particles formed by agglomeration of primary particles of hexagonal boron nitride, in which a degree of purity is 98.5% by mass or more, and a concentration of elutable impurities is 700 ppm or less.
Abstract:
The present invention relates to aggregated boron nitride particles including hexagonal boron nitride primary particles aggregated, including a spacer type coupling agent. The thermally conductive resin composition of the present invention includes the aggregated boron nitride particles of the present invention. The heat dissipation member of the present invention includes the thermally conductive resin composition of the present invention. According to the present invention, aggregated boron nitride particles that can suppress the formation of voids in a heat dissipation member produced by mixing with a resin, a thermally conductive resin composition including the aggregated boron nitride particles, and a heat dissipation member using the thermally conductive resin composition can be provided.