Abstract:
A braking device for a vehicle is provided which includes a braking simulator, thus resulting in improved mountability of the braking device in the vehicle. The braking device is designed to permit component parts of the hydraulic booster to slide on one another in response to a braking effort on a brake pedal, thereby absorbing an undesirable load on the braking device and also ensuring the stability in operating the brake pedal. This results in improved durability and maneuvering feeling of the braking device.
Abstract:
In a driving assist system, a driving assist device as a control device acquires driving control information to be used for performing a driving control process in which an own vehicle follows a preceding vehicle running on the same lane of the own vehicle in front of the own vehicle. The driving assist device performs the driving control process of the own vehicle based on the acquired driving control information. The driving assist device detects an interruption of a preceding-vehicle following of the own vehicle. In the preceding-vehicle following, the own vehicle follows the preceding vehicle running on the same lane. The driving assist device decelerates a vehicle speed of the own vehicle by using a predetermined braking force when detecting the interruption of the preceding-vehicle following of the own vehicle during the preceding-vehicle following.
Abstract:
An object detection device that detects a corner of an object includes: a transmitter that transmits a search wave; receivers that receive a reflected wave reflected off the corner. The device determines a first path length of the search wave from the transmitter to a first receiver, and uses the positions of the transmitter and the first receiver as focal points to find a first ellipse whose distances from the transmitter and the first receiver add up to the first path length. The device determines a second path length of the search wave from the transmitter to a second receiver, and uses the positions of the transmitter and the second receiver as focal points to find a second ellipse whose distances from the transmitter and the second receiver add up to the second path length. The device finds an intersection point between the first and second ellipses as the corner.
Abstract:
A braking device for a vehicle is provided which includes a hydraulic booster to make wheels of the vehicle produce frictional braking force. The hydraulic booster includes a fluid chamber and a throttle. When a brake pedal is depressed suddenly, the throttle works to obstruct or restrict an outflow of brake fluid from the fluid chamber, thereby increasing the pressure in the fluid chamber. This causes the pressure in a master chamber of the hydraulic booster to rise, thereby producing the frictional braking force almost no later than start of the depression of the brake pedal.
Abstract:
A control apparatus for a vehicle includes processing circuitry. The processing circuitry calculates a target torque such that the greater the amount of brake operation is, the smaller the target torque becomes. The processing circuitry controls the drive motor such that the creep torque is smaller when brake operation is being performed by the driver than when the brake operation is not being performed by the driver. The control circuitry controls the brake device such that, when the brake operation is being performed by the driver, the brake torque approaches a target brake torque. The processing circuitry sets a decrease gradient of the creep torque to be smaller than a decrease gradient of the target torque when the brake operation amount is increased under a condition in which the creep torque is being output by the drive motor.
Abstract:
A braking device for a vehicle is provided which includes a hydraulic booster to make wheels of the vehicle produce frictional braking force, a solenoid valve installed in a flow path connecting between a brake fluid accumulator and a servo chamber of the hydraulic booster, and a collision avoidance controller. When determining that there is a risk of a collision with an obstacle, the collision avoidance controller opens the first solenoid valve to achieve emergency braking to minimize the risk of the collision. Basically, the emergency braking is achieved only using the solenoid valve, thus allowing an emergency avoidance mechanism of the braking device to be constructed with a minimum of equipment and facilitating the mountability of the braking device in vehicles.
Abstract:
A braking device for a vehicle is provided which includes a power fail-safe mechanism which works to create frictional braking force at a wheel of the vehicle in the event of loss of electric power. The braking device is equipped with an electromagnetic valve which is of a normally closed type. In the event of loss of electric power in the braking system, the electromagnetic valve is closed to block fluid communication between a hydraulic booster and a brake fluid reservoir, so that a stroke chamber in the hydraulic booster is hermetically closed. This enables the pressure in a master cylinder to rise in response to depression of a brake pedal to develop the frictional braking force.
Abstract:
A braking device for a vehicle is provided which is equipped with a hydraulic booster. The hydraulic booster includes a master cylinder, a braking simulator, and an input piston. The input piston is disposed in the master cylinder in connection with a brake actuating member such as a brake pedal and is moved in response to a braking effort applied to the brake actuating member to drive a spool valve which switches among a pressure-reducing mode, a pressure-increasing mode, and a pressure-holding mode. The braking simulator works to urge the input piston rearward and is disposed inside a cylindrical cavity of the master cylinder of the hydraulic booster. This layout improves the mountability of the braking device in vehicles.