Abstract:
There is provided a recycled cathode material precursor, including: a metal element α consisting of at least one of nickel, cobalt and manganese; and a metal element β consisting of at least one of iron, copper and aluminum, wherein a content of the metal element β is 0.5 to 20% by mass in the recycled cathode material precursor.
Abstract:
There is provided a method for processing a solar cell module, including: removing a frame member from a solar cell module to obtain a frame-removed material; crushing the frame-removed material to obtain a crushed material; and electrostatically separating the crushed material, wherein in the electrostatic separation, the crushed material is charged and separated in accordance with density and conductivity.
Abstract:
Provided is a method of recovering valuable materials that is a method of recovering lithium carbonate from a lithium-ion secondary battery, where the lithium carbonate has a boron content of less than 1 ppm and a calcium content of 100 ppm or less. The method includes a heat treatment step, a crushing and classification step, a slurry formation step, a wet magnetic separation step, an acid leaching step, a neutralization step, a neutralized cake solid-liquid separation step, a calcium carbonate crystallization step, a calcium carbonate solid-liquid separation step, and a calcium adsorption and removal step.
Abstract:
A method for recovering a valuable material from a lithium-ion secondary battery, the method contains: roasting a lithium-ion secondary battery containing a valuable material in a metal battery case thereof to obtain a roasted material; stirring the roasted material with liquid to separate contents containing the valuable material from the inside of the metal battery case; and sorting the contents separated by the separation and the metal battery case to obtain a recovered material containing the valuable material.
Abstract:
A method for recovering a valuable substance from a lithium ion secondary battery is provided. The method includes a thermal treatment step of thermally treating a lithium ion secondary battery containing aluminum, carbon, and a copper foil as constituting materials, and a wet sorting step of applying an external force to a thermally treated product obtained in the thermal treatment step in the presence of a liquid, to sort the thermally treated product into a heavy product and a light product containing copper.
Abstract:
A metal recovery method includes crushing a photovoltaic module or a photovoltaic sheet-like structure to form debris; and sorting the debris, wherein the photovoltaic sheet-like structure is obtained by removing a glass substrate and a frame member from the photovoltaic module, and includes at least a photovoltaic cell, a metal pattern wired from the photovoltaic cell, and an encapsulant to encapsulate the photovoltaic cell and the metal pattern.
Abstract:
A method for recovering a valuable substance is provided. The method includes: a thermal treatment step of thermally treating a target containing a valuable substance while supporting a target storing unit, in which the target is stored, by a supporting unit that can support the target storing unit, wherein the thermally treating includes heating a gas present in a region, in which the supporting unit is positioned, by a flame for thermally treating the target such that the target storing unit is not contacted by the flame; and a valuable substance recovering step of recovering the valuable substance from a thermally treated product of the target obtained in the thermal treatment step.
Abstract:
Provided is a sorting method for valuable resources, including a thermal treatment step of thermally treating a target containing valuable resources, to melt aluminum and separate a melt, a pulverizing step of pulverizing a thermally treated product remaining after the melt is separated, to obtain a pulverized product, a magnetic sorting step of sorting the valuable resources from the pulverized product by a magnetic force, and a wind force sorting step of sorting one valuable resource from another valuable resource in the valuable resources by a wind force.
Abstract:
Provided is a method for separating lithium from a lithium solution containing lithium by 200 mg/L or more and fluorine by 20 mg/L or more, the method including: a first removal step of adding a first component, which solidifies the fluorine contained in the lithium solution, to the lithium solution and removing the fluorine solidified to obtain a F-removed liquid; and a second removal step of adding a second component, which solidifies the first component remaining in the F-removed liquid, to the F-removed liquid and removing the first component solidified to obtain a first component-removed liquid.
Abstract:
A method for recovering a valuable substance is provided. The method includes a thermal treatment step of thermally treating a target containing a valuable substance using a continuous furnace configured to thermally treat the target while moving a target storing unit, in which the target is stored, such that the target storing unit is not contacted by a flame that is for thermal treatment, and a valuable substance recovering step of recovering the valuable substance from a thermally treated product of the target obtained in the thermal treatment step.