Abstract:
The present invention relates to a process for preparing foil-ripened cheese comprising (i) introducing cheese after brining into a cheese-aging packaging containing an opening for receiving cheese, (ii) closing the packaging, and (iii) ripening the cheese, wherein the cheese-aging packaging comprises a thermoplastic, monolithic film and the closed cheese-aging packaging has a water vapor transmission rate of at least 10 g/m2/24 hours at 10° C. and 85% relative humidity and an oxygen permeability of at most 100 cm3/m2/24 hours/atm at 10° C. and 85% relative humidity.
Abstract translation:本发明涉及一种制备薄片熟化干酪的方法,该方法包括(i)在浇注后将干酪引入含有用于接收干酪的开口的干酪熟化包装,(ii)封闭包装,和(iii)熟化干酪,其中 干酪老化包装包括热塑性整体膜,封闭的干酪熟化包装在10℃和85%相对湿度下的水蒸汽透过率至少为10g / m 2/24小时,氧气渗透率为 在10℃和85%相对湿度下,最大100cm 3 / m 2/24小时/ atm。
Abstract:
Process for the production of a thermoplastic polymer comprising segments of a diamide, the process comprising: 1) a first step of preparing a reaction mixture comprising a diamine H2N—Y—NH2 Form. (I), and a diester of a dicarboxylic acid Form. (II) 2) a second step of heating the reaction mixture to a temperature at least 5° C. above the crystallization temperature of the diester and a least 5° C. below the melting temperature of the formed amide (formula III) in the presence of an alkaline or earth alkaline alkoxy catalyst Form. (III) wherein X and Y are the same or different and are an aliphatic group comprising 2-12 carbon atoms or an aromatic group comprising 6-20 carbon atoms, R1 and R2 are the same or different and are an aliphatic group comprising 2-15 carbon atoms and wherein R equals R1 or R2 and are the same or different. 3) optionally a third step of quenching the catalyst of the reaction mixture obtained in the second step by adding an acid to the reaction mixture and 4) a fourth step of adding further components to the reaction mixture obtained in the second step, or if the third step has been applied to the reaction mixture obtained in the third step, and so producing the thermoplastic polymer comprising the segments of the diamide.
Abstract:
The present invention relates to a process for preparing foil-ripened cheese comprising (i) introducing cheese after brining into a cheese-aging packaging containing an opening for receiving cheese, (ii) closing the packaging, and (iii) ripening the cheese, wherein the cheese-aging packaging comprises a thermoplastic, monolithic film and the closed cheese-aging packaging has a water vapor transmission rate of at least 10 g/m2/24 hours at 10° C. and 85% relative humidity and an oxygen permeability of at most 100 cm3/m2/24 hours/atm at 10° C. and 85% relative humidity.
Abstract:
Fine pitch electrical connector socket, comprising at least two opposing walls between which a passageway is defined for receiving an insert with contact pins, the walls being formed from a fiber reinforced flame retardant thermoplastic polymer composition comprising a polyamide polymer, a flame retardant system and a fibrous reinforcing agent, wherein the polyamide polymer comprises at least a semi-crystalline polyamide (A) having a melting temperature Tm-A of at least 280° C., and optionally a second polyamide (B); the polyamide polymer has a crystallization enthalpy ΔHc of at least 50 J/g, the melting temperature Tm-A and crystallization enthalpy ΔHc being measured by DSC with the method according to ISO11357-1/3 with a heating and cooling rate of 20 ° C.; the flame retardant system comprises a combination of (C-1) a metal salt of dialkylphosphinate and/or diphosphinate and (C-2) a metal salt of phosphoric acid; and the composition has a heat distortion temperature of at least 265° C., measured according to ISO 75-1/2.
Abstract:
The invention relates to a flame-retardant polyamide composition comprising a polyamide with a melting temperature higher than 265° C. and ammeline and/or ammelide, in which the ammeline and/or ammelide is obtainable by a biocatalytic process from melamine in an aqueous reaction mixture comprising a biocatalyst, wherein melamine is converted into ammeline and optionally further into ammelide.