Abstract:
The invention relates to a co-extruded film comprising a sealing layer of low density polyethylene and a skin layer, wherein the skin layer comprises a copolyamide which comprises: •At least 75 wt % monomeric units derived from caprolactam; •Between 5 to 25 wt % monomeric units derived from a diamine and terephthalic acid; wherein the weight percentage is with respect to the total weight of copolyamide in the skin layer. The invention also relates to a process for preparing such a film, as well as applications of the film.
Abstract:
The invention relates to a polymer composition comprising: a) a thermoplastic copolyester comprising i. polyester hard segments in an amount of between 5 and 50 wt. %, with respect to the total weight of the polymer composition, and ii. soft segments having a number average molecular weight of between 2.000 and 10.000 g/mol; and b) a metal salt; and c) an organic nitrile component, and wherein the metal salt is present in a weight percentage between 10 to 80 wt. %, the organic nitrile component is present in a weight percentage between 10 and 80 wt. %, and the soft segment is present in a weight percentage between 10 and 80 wt. %, wherein the weight percentages are with respect to the total weight of metal salt, organic nitrile component and soft segment; as well as a battery comprising the polymer composition
Abstract:
Solid polymer electrolyte containing A: a thermoplastic elastomer containing polyester, polyamide or diamide hard blocks and ionically conductive soft blocks and B: a metal salt and less than 15 wt. % of a plasticizer. The electrolyte may be used as a spacer in a battery, a binder in an electrode and an adhesive film between a spacer and at least one electrode of a battery.
Abstract:
The invention relates to a process for preparing a biaxially oriented film, comprising the following steps: a) Melting a composition comprising at least 50 wt % with respect to the total amount of the composition of a copolyamide comprising: i. At least 75 wt % monomeric units derived from caprolactam, and further monomeric units derived from diamines X and/or diacids Y and/or aminoacids Z in a summed amount of between 0.2 to 25 wt %; or ii. At least 75 wt % monomeric units derived from hexamethylene diamine and adipic acid, and further monomeric units derived from diamines X and/or diacids Y and/or aminoacids Z in a summed amount of between 0.2 to 25 wt %; into a polymer melt; b) Casting the polymer melt through a planar die to form a film of at least one layer and subsequently quenching the film to a temperature of below Tg of the copolyamide; c) Stretching the film obtained after quenching in a direction parallel to the machine (MD-stretching) with a factor of at least 2 at a temperature of at least Tg of the copolyamide; d) Stretching the film obtained after MD stretching in a direction transversal to the machine (TD-stretching) with a factor of at least 2 at a temperature of at least Tg+10° C. of the copolyamide; e) Cooling the obtained film after TD-stretching; f) Heat setting the film obtained after cooling, at a temperature of between Tm−70° C. and Tm of the copolyamide; in which Tg and Tm of the copolyamide are determined as described by ASTM D3418-03. The invention also relates to a biaxially oriented film and food packaging obtainable by this process.
Abstract:
The invention relates to a stretched polymer film made of a polyamide composition comprising a semi-crystalline semi-aromatic polyamide (PPA), wherein the PPA consists of repeat units derived from aromatic dicarboxylic acid comprising at least 80 mole % of terephthalic acid, relative to the total amount of aromatic dicarboxylic acid; and diamine comprising at least 5 mole % 1,4-butanediamine and at least 5 mole % 1,6-hexanediamine, relative to the total amount of diamine, the combined amount of 1,4-butanediamine and 1,6-hexanediamine being at least 60 mole % relative to the total amount of diamine; and 0-2 mole % of other monomeric units, relative to the total amount of aromatic dicarboxylic acid, diamine and other monomeric units. The invention further relates to a process for preparing the polyamide film by melt extrusion and stretching of the film.
Abstract:
The present invention relates to a process for preparing foil-ripened cheese comprising (i) introducing cheese after brining into a cheese-aging packaging containing an opening for receiving cheese, (ii) closing the packaging, and (iii) ripening the cheese, wherein the cheese-aging packaging comprises a thermoplastic, monolithic film and the closed cheese-aging packaging has a water vapor transmission rate of at least 10 g/m2/24 hours at 10° C. and 85% relative humidity and an oxygen permeability of at most 100 cm3/m2/24 hours/atm at 10° C. and 85% relative humidity.
Abstract:
The present invention relates to a polymer fiber made of a polyamide composition comprising a semi-crystalline semi-aromatic polyamide (PPA), wherein the PPA consists of repeat units derived from—aromatic dicarboxylic acid comprising at least 80 mole % of terephthalic acid, relative to the total amount of aromatic dicarboxylic acid and—diamine comprising at least 5 mole % of a first diamine and at least 5 mole % of a second diamine relative to the total amount of diamine; and—0-5 mole % of other monomeric units, relative to the total amount of aromatic dicarboxylic acid, diamine and other monomeric units, wherein the PPA has a melting temperature (Tm) of at least 310° C. measured by the DSC method according to ISO-11357-1/3, 2011 and with a heating rate of 10° C./min.
Abstract:
Process for producing by blown film process a multilayer film containing at least one copolyamide layer and at least one polyolefin layer, in which the copolyamide comprises monomeric units of: •aliphatic non-cyclic diamines X and aliphatic non-cyclic dicarboxylic acids Y or aliphatic non-cyclic α,ω-amino acids Z, and •diamines M and diacids N in an amount between 0.1 to 2 wt % based on the total amount of copolyamide, and in which M and N are cyclic. The invention also relates to a multilayer blown film containing at least one copolyamide layer and at least one polyolefin layer, in which the copolyamide comprises monomeric units of: •aliphatic non-cyclic diamines X and aliphatic non-cyclic dicarboxylic acids Y or aliphatic non- cyclic α,ω-amino acids Z, and •diamines M and diacids N in an amount between 0.1 to 2 wt % based on the total amount of copolyamide, and in which M and N are cyclic.
Abstract:
The invention relates to a method for forming a three-dimensional object by fused filament fabrication comprising the step of selectively dispensing a polymer composition containing a semi-crystalline copolyamide in accordance with the shape of a portion of a three-dimensional object, characterized that the semi-crystalline copolyamide comprises: a) At least 70 wt. % of aliphatic monomeric units derived from i. Aminoacid A, or ii. diamine B and diacid C, and b) At least 0.5 wt. % of further monomeric units derived from a cyclic monomer, wherein wt. % is with respect to the total weight of the semi-crystalline copolyamide. The invention relates also relates to objects attainable by this method and to the use of the said semi-crystalline copolyamide in fused filament fabrication.