摘要:
Systems and methods of optical coherence tomography stereoscopic imaging for microsurgery visualization are disclosed. In accordance with an aspect, a method includes capturing a plurality of cross-sectional images of a subject. The method includes generating a stereoscopic left image and right image of the subject based on the cross-sectional images. Further, the method includes displaying the stereoscopic left image and the right image in a display of a microscope system.
摘要:
Systems and methods of optical coherence tomography stereoscopic imaging for microsurgery visualization are disclosed. In accordance with an aspect, a method includes capturing a plurality of cross-sectional images of a subject. The method includes generating a stereoscopic left image and right image of the subject based on the cross-sectional images. Further, the method includes displaying the stereoscopic left image and the right image in a display of a microscope system.
摘要:
Segmentation and identification of closed-contour features in images using graph theory and quasi-polar transform are disclosed. According to an aspect, a method includes representing, in a rectangular domain, an image including a feature of interest. Further, the method includes determining a point within the feature of interest. The method also includes transforming the image of the feature from the rectangular domain to a quasi-polar domain based on the point. The quasi-polar domain is represented as a graph of nodes connected together by edges. The method also includes graph cutting the quasi-polar domain to identify the boundary of the feature of interest in the image.
摘要:
Disclosed herein are systems and method for segmentation and identification of structured features in images. According to an aspect, a method may include representing an image as a graph of nodes connected together by edges. For example, the image may be an ocular image showing layered structures or other features of the retina. The method may also include adding, to the graph, nodes adjacent to nodes along first and second sides of the graph. The added nodes may have edge weights less than the nodes along the first and second sides of the graph. Further, the method may include assigning start and end points to any of the added nodes along the first and second sides, respectively. The method may also include graph cutting between the start and end points for identifying a feature in the image.
摘要:
Disclosed herein are systems and method for segmentation and identification of structured features in images. According to an aspect, a method may include representing an image as a graph of nodes connected together by edges. For example, the image may be an ocular image showing layered structures or other features of the retina. The method may also include adding, to the graph, nodes adjacent to nodes along first and second sides of the graph. The added nodes may have edge weights less than the nodes along the first and second sides of the graph. Further, the method may include assigning start and end points to any of the added nodes along the first and second sides, respectively. The method may also include graph cutting between the start and end points for identifying a feature in the image.
摘要:
Imaging and visualization systems, instruments, and methods using optical coherence tomography (OCT) are disclosed. A method for OCT image capture includes determining a location of a feature of interest within an operative field. The method also includes determining a relative positioning between the feature of interest and an OCT scan location. Further, the method includes controlling capture of an OCT image at a set position relative to the feature of interest based on the relative positioning.
摘要:
Systems and methods for long working distance optical coherence tomography (OCT). According to an aspect, an OCT system includes a reference arm. Further, the OCT system includes a sample arm operably connected to the reference arm. The sample arm includes a scanner configured to scan an optical beam. The sample arm also includes an objective positioned a predetermined distance from the scanner, configured to receive the optical beam, and to direct the optical beam to an object positioned at about the predetermined distance from the scanner for imaging of the object.
摘要:
Systems and methods for eye tracking for motion corrected ophthalmic optical coherence tomography (OCT) are disclosed. According to an aspect, an imaging system includes an eye tracking device configured to determine movement of an eye. The imaging system also includes an OCT apparatus configured to generate OCT images of a retina of the eye. The OCT apparatus includes a scanner operable to be moved for relocating an OCT scan pivot at a pupil plane for image capture and during capture of the OCT images. The imaging system also includes a controller configured to control the scanner to relocate the OCT scan pivot at the pupil plane based on the determined movement of the eye.
摘要:
Stereoscopic display systems and methods for displaying surgical data and information in a surgical microscope are disclosed herein. According to an aspect, a system includes first and second eyepieces. The system includes a display having first and second display portions, configured to display first images in the first display portion, and configured to display second images in the second display portion. The first image and the second image are projected along a first pathway and a second pathway. The system includes a first optical element positioned to relay the first images into the first eyepiece. The system includes a second optical element positioned to relay the second images into the second eyepiece.
摘要:
Segmentation and identification of closed-contour features in images using graph theory and quasi-polar transform are disclosed. According to an aspect, a method includes representing, in a rectangular domain, an image including a feature of interest. Further, the method includes determining a point within the feature of interest. The method also includes transforming the image of the feature from the rectangular domain to a quasi-polar domain based on the point. The quasi-polar domain is represented as a graph of nodes connected together by edges. The method also includes graph cutting the quasi-polar domain to identify the boundary of the feature of interest in the image.