Abstract:
A method of fabricating a plasma display panel includes forming one or more electrodes on a substrate, forming a dielectric layer on the first electrode including the substrate, laminating a dry film photoresist on the dielectric layer, patterning the dry film photoresist using a mask, forming one or more capillary discharge sites in the dielectric layer using sand blasting, and removing the patterned dry film photoresist from the substrate. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
A plasma addressed liquid crystal device (LCD) and its manufacturing method is disclosed wherein a second substrate is divided into segments which are connected at a joint. A third substrate is provided which includes a plurality of barriers formed thereon. The barriers are adhered to the second substrate by a gelled paste and the joints of the second substrate overlay the barriers. The joints and the barriers are fixed by the gelled paste so as to party absorb impacts from the second substrate.
Abstract:
A method for forming barrier ribs for a gas discharge display panel which includes the steps of: covering a glass substrate with a conductive ITO film; covering the conductive film with photoresist; exposing the photoresist to radiation; developing the photoresist so as to selectively remove portions of photoresist thereby creating apertures in the photoresist; etching the panel conductive ITO film so as to remove the conductive film in the apertures; depositing barrier rib material including glass particles in the apertures formed in the photoresist until such time as the barrier rib material exceeds the thickness of the photoresist material; and, heating the foregoing combination to a temperature of approximately 580.degree. C. for about 10 minutes to burn off substantially all photoresist material and solidify the barrier material so as to form glass barrier ribs. The glass barrier ribs formed have a shape at least partially defined by the photoresist that was burned off.
Abstract:
Provided is a communication quality measurement method and a portable communication quality measurement device for wireless sensor network configuration. The communication quality measurement method for wireless sensor network configuration includes: a portable communication quality measurement device transmitting a communication quality detection request message to one or more of communication nodes in a wireless sensor network system at a location prepared for new installation; the one or more of the communication nodes in the wireless sensor network system receiving the communication quality detection request message to detect transmission quality information on the communication quality detection request message and adding the detected transmission quality information to a respond message to transmit the respond message to a next communication node; and the portable communication quality measurement device receiving the respond message transceived between the communication nodes to detect reception quality information and displaying the detected reception quality information and transmission quality information included in the respond message.
Abstract:
A plasma display panel having a trench discharge cell and a method of fabricating the same are disclosed in the present invention. The plasma display panel having a plurality of trench discharge cells includes a transparent substrate having at least one isolated trench in a discharge cell, one or more sustain electrodes in each trench and extended to outside of the trench, one or more bus electrodes on the sustain electrode, and a dielectric layer formed on an entire surface of the transparent substrate including the sustain electrodes, the bus electrodes, and the trench, wherein the dielectric layer has a first portion on the bottom of the trench, a second portion outside the trench of the substrate, and a third portion on side-walls of the trench, and wherein the trench has a first length perpendicular to a direction of the sustain electrodes and a second length parallel to a direction of the sustain electrodes and the first length is greater than the second length.
Abstract:
A plasma display panel includes anodes and barrier ribs formed on an upper face plate, first sustaining electrodes which are formed on a lower rear plate, and covered with a dielectric material, and cathodes which are formed on the dielectric material and connected to the respective capacitors via a common node, thereby serving as second sustaining electrodes. In a driving method of the panel, the first sustaining electrode is supplied with a pulse varying from ground potential to a first positive potential, from the first positive potential back to ground potential, and then from ground potential to a first negative potential, the second sustaining electrode is supplied with a pulse varying from ground potential to the first negative potential, from the first negative potential back to ground potential, and then from ground potential to the first positive potential, the anode is supplied with a writing pulse varying from a third positive potential to a fourth positive potential for data writing, when the pulses of the first and second sustaining electrodes are both at ground potential and the cathode is supplied with a negative scanning pulse varying from a third negative potential to a fourth negative potential, and the cathode is supplied with a negative erasing pulse having an amplitude equal to the difference between the third and fourth potentials, for erasing the written data after a predetermined time has elapsed. Thus, stable memory operation becomes possible.