Interval error observer-based aircraft engine active fault tolerant control method

    公开(公告)号:US11635734B2

    公开(公告)日:2023-04-25

    申请号:US16609940

    申请日:2019-01-10

    Abstract: The present invention provides an interval error observer-based aircraft engine active fault tolerant control method, and belongs to the technical field of aircraft control. The method comprises: tracking the state and the output of a reference model of an aircraft engine through an error feedback controller; compensating a control system of the aircraft engine having a disturbance signal and actuator and sensor faults through a virtual sensor and a virtual actuator; observing an error between a system with fault of the aircraft engine and the reference model through an interval error observer, and feeding back the error to the error feedback controller; and finally, using a difference between the output of the reference model of the system with fault and the output of the virtual actuator as a control signal to realize active fault tolerant control of the aircraft engine.

    Bumpless transfer fault tolerant control method for aero-engine under actuator fault

    公开(公告)号:US11492980B2

    公开(公告)日:2022-11-08

    申请号:US16761031

    申请日:2019-06-13

    Abstract: A bumpless transfer fault tolerant control method for aero-engine under actuator fault is disclosed. For an aero-engine actuator fault, by adopting an undesired oscillation problem produced by an active fault tolerant control method based on a virtual actuator, in order to solve the shortage of the existing control method, a bumpless transfer active fault tolerant control design method for the aero-engine actuator fault is provided, which can guarantee that a control system of the reconfigured aero-engine not only has the same state and output as an original fault-free system without changing the structure and parameters of a controller, to achieve a desired control objective, and that a reconfigured system has a smooth transient state, that is, output parameters such as rotational speed, temperature and pressure do not produce the undesired transient characteristics such as overshoot or oscillation.

    Method for fault diagnosis of aero-engine sensor and actuator based on LFT

    公开(公告)号:US11203446B2

    公开(公告)日:2021-12-21

    申请号:US16604042

    申请日:2018-12-11

    Abstract: The present invention discloses a method for fault diagnosis of the sensors and actuators of an aero-engine based on LFT, and belongs to the field of fault diagnosis of aero-engines. The method comprises: establishing an aero-engine state space model using a combination of a small perturbation method and a linear fitting method; establishing an affine parameter-dependent linear-parameter-varying (LPV) model of the aero-engine based on the model; converting the LPV model of the aero-engine having perturbation signals and sensor and actuator fault signals into a linear fractional transformation (LFT) structure to obtain an synthesis framework of an LPV fault estimator; solving a set of linear matrix inequalities (LMIs) to obtain the solution conditions of the fault estimator; and designing the fault estimator in combination with the LFT structure to realize fault diagnosis of the sensors and actuators of an aero-engine.

    Simulink modeling method for mechanical hydraulic device of aeroengine fuel regulator

    公开(公告)号:US11002212B1

    公开(公告)日:2021-05-11

    申请号:US16764304

    申请日:2019-03-15

    Abstract: A Simulink modeling method for a mechanical hydraulic device of an aeroengine fuel regulator is proposed. The Simulink modeling method can implement high precision simulation of a mechanical hydraulic device of an engine fuel conditioning system, and greatly increase the simulation speed as compared with the existing modeling simulation in AMESim; solve the problem of a double-layered nested algebraic loop occurring when the mechanical hydraulic device is modeled in Simulink, and improve the simulation precision of the system. In addition, because of having certain universality, the resolving method for a double-layered nested algebraic loop can be generalized to resolve other types of algebraic loops. Meanwhile, the parameters of the simulation model provided by the present invention can be conveniently modified, and can provide a reference for modeling simulation of mechanical and hydraulic devices of engine fuel conditioning systems of other types.

    PZT transducer-horn integrated ultrasonic driving structure

    公开(公告)号:US09974587B2

    公开(公告)日:2018-05-22

    申请号:US15525916

    申请日:2015-09-13

    Abstract: A PZT transducer-horn integrated ultrasonic driving structure consists of a nut, a bolt, a left PZT circular stack, a flange, a right PZT truncated stack and a horn. The horn, the right PZT truncated stack, the flange and the left PZT circular stack are arranged in sequence and connected via the bolt and then fastened via the nut; the right PZT transducer is a truncated cone-shaped stack formed by PZT circular plates; and the right PZT transducer and the horn are integrated to form the ultrasonic driving structure. Considering the dimension of PZT on two sides of the flange and the horn meet the requirements for ultrasonic vibration node and antinode, the dimension of round contour of the circular PZT stack and flange is reduced to increase the thickness of the truncated PZT stack and flange. With the integrated structure, the effect of reducing the contour dimension of the ultrasonic driving surgical device can be obtained, and the outer diameter is reduced to the range of 8-10 mm as compared with the range of 12-15 mm in the prior art, thereby further meeting the application requirements.

Patent Agency Ranking