摘要:
An engine control system and method for controlling engine air flow during a deceleration fuel cut includes an internal combustion engine, an anti-lock braking system (ABS), and an electronic control unit (ECU) that controls the engine. The ECU establishes a desired air flow rate for the internal combustion engine, which is taken from an ABS failed condition look-up table when determined that the ABS has failed while the engine is in a deceleration fuel cut mode, and otherwise is taken from a normal condition look-up table.
摘要:
An engine control system and method for controlling engine air flow during a deceleration fuel cut includes an internal combustion engine, an anti-lock braking system (ABS), and an electronic control unit (ECU) that controls the engine. The ECU establishes a desired air flow rate for the internal combustion engine, which is taken from an ABS failed condition look-up table when determined that the ABS has failed while the engine is in a deceleration fuel cut mode, and otherwise is taken from a normal condition look-up table.
摘要:
A system and method of compensating for torque converter slip in a motor vehicle include measuring rotational speeds of an engine crankshaft and mainshaft, as well as measuring operating temperatures of a fluid associated with the motor vehicle. Engine output torque is adjusted as required by controlling some combination of ignition timing, intake air flow, fuel injection, and accessory load.
摘要:
A system and method of compensating for torque converter slip in a motor vehicle include measuring rotational speeds of an engine crankshaft and mainshaft, as well as measuring operating temperatures of a fluid associated with the motor vehicle. Engine output torque is adjusted as required by controlling some combination of ignition timing, intake air flow, fuel injection, and accessory load.
摘要:
An electric load system and method for a vehicle includes an electric load, electric devices, an electrically driven element operating in an operating state, an electric load detector to measure an electric load generated by the electric devices, and an electric control unit communicating with the electric load detector and the electrically driven element to determine an electric load of the electric load system. The method includes estimating an electric load of the electrically driven element based on an operating state of the electrically driven element via the electric control unit and adding the electric load from the electrically driven element to an electric load measured by the electric load detector.
摘要:
An electric load system and method for a vehicle includes an electric load, electric devices, an electrically driven element operating in an operating state, an electric load detector to measure an electric load generated by the electric devices, and an electric control unit communicating with the electric load detector and the electrically driven element to determine an electric load of the electric load system. The method includes estimating an electric load of the electrically driven element based on an operating state of the electrically driven element via the electric control unit and adding the electric load from the electrically driven element to an electric load measured by the electric load detector.
摘要:
A control for controlling an intake air into an engine is provided. A control valve for adjusting an amount of the intake air into the engine is provided. A desired opening degree of a control valve provided in an intake air passage into the engine is determined based on a clogging coefficient. The clogging coefficient indicates a degree of clogging of the intake air passage. An opening degree of the control valve is controlled to converge to the desired opening degree. The clogging coefficient is updated based on a feedback correction amount for feedback controlling a rotational speed of the engine during idling operation. If a leakage in a blow-by gas passage that is connected between the engine and the intake air passage is detected, the update of the clogging coefficient is prohibited.
摘要:
An engine control system for preventing automatic increasing of an engine speed above a threshold engine speed when increasing engine speed toward an elevated transmission mainshaft speed during a transmission downshift includes a downshift sensor for detecting a transmission downshift in a manual transmission and an electronic control unit (ECU) operatively connected to the downshift sensor for receiving a downshift signal therefrom indicative of the transmission downshift. The ECU automatically increases the engine speed toward a transmission mainshaft speed when the downshift sensor detects a transmission downshift. The ECU limits the increasing of the engine speed to an engine target speed that is below the threshold engine speed.
摘要:
A control system capable of controlling a heater that heats an oxygen concentration detector in a fine-grained, efficient, and optimal manner. The control system controls an O2 heater for heating an O2 sensor provided in an exhaust pipe of an internal combustion engine, when the engine is started. An ECU sets a duty ratio of a control signal supplied to the O2 heater to a first predetermined value until a first predetermined time period has elapsed after the start of the engine was detected, and sets the same to a second predetermined value smaller than the first predetermined value until a second predetermined time period has elapsed after the lapse of the first predetermined value. Further, the ECU sets the duty ratio of the control signal to a third predetermined value smaller than the second predetermined value after the lapse of the second predetermined time period.
摘要:
A method of controlling fuel composition learning includes steps of monitoring changes in airflow within an engine to determine steady state conditions. The method further includes steps of initiating a fuel composition learning process during steady state conditions. A current fuel component concentration factor is updated using a temporary fuel component concentration factor. The temporary fuel component concentration factor is calculated as the average of an air/fuel correction factor. Once the current fuel component concentration factor is updated, the temporary fuel component concentration factor is reset. The air/fuel correction factor is reset to reflect any difference that existed between the temporary fuel component concentration factor and the air/fuel correction factor at the update time.